ࡱ > r [ R څ bjbj 8 ΐ ΐ 8! % a+ a+ + + + + + + 8 + L I- d + _ . r 3 " A3 A3 A3 A . B \ C 0 ^ ^ ^ ^ ^ ^ ^ $ b te F _ + OC sA " A OC OC _ a+ a+ A3 A3 2 _ Q Q Q OC a+ 8 A3 + A3 ^ Q OC ^ Q Q r Z h + \ A3 aC + N W\ ^ _ 0 _ e\ z e Q e \ \ 8 e + ] OC OC Q OC OC OC OC OC _ _ Q OC OC OC _ OC OC OC OC e OC OC OC OC OC OC OC OC OC '* : ~_gnWzfĉR{lxvz Oe _zLO/cNS kp{Q]z'Yf[U [ 7 1 0 0 2 5 Xd:N㉳Q~_gnWNRĉRwQ g~_gagNY0{ YBgv^zN~_gnWNRĉR!jW9hnc!jWyrpPtW O{lTy_d"}{lvO:p[W O{lۏL9eۏǏbW O{lTy_d"}{lۏLTb_bNW Oy_d"}T{lǏ[kRgۏL'`k>f:y勗{lY>fWvcؚ{HesQ\{b,g/f㉳Q~_gnWNRĉRvؚHeSLvzf{l0 sQ.͋~_gnWzfĉRۏS{lG T S A -NVR{|ST N 9 9 e.shƋxA R e s e a r c h o n t h e C o n s t r a i n t S a t i s f a c t i o n T y p e o f I n t e l l i g e n c e P l a n n i n g A l g o r i t h m J i a n g M i n , Z h a n g L i x i n g , W e i Z h e n h u a ( C o l l e g e o f R o c k e t F o r c e E n g i n e e r i n g U n i v e r s i t y , X i a n , S h a n x i 7 1 0 0 2 5 C h i n a ) A b s t r a c t F o r s o l v i n g t h e c o n s t r a i n t s a t i s f a c t i o n t y pe ofmissionplanning problems is with more constraints and computationally complex, the paper buildsthe constraint satisfaction type of mission planning model.According to the characteristics of the model, drawing on the advantages and disadvantages of genetic algorithms and tabu search algorithm, genetic algorithm is improved. By genetic algorithm and tabu search algorithm integrated, form the genetic tabu fusion algorithm. According to comparing analysis, it can be shown that the new algorithm can significantly improve the computational efficiency, reduce computing costs, which is feasible and efficient to solve the constraint satisfaction type of mission planning. Keywords: constraint satisfaction type; intelligent planning; evolutionary algorithm; GTSA 0 _ ~_gnW( C o n s t r a i n t S a t i s f a c t i o n P r o b l e m , C S P ) /f{:gyf[TN]zfxvzv8h_KN Ne8^u;m-Nv~TOS0f^Sc:N~_gnW[ 1 ] S+TYvNsQTv;mRvQ-Nk*N]^ gnx[vc~eT~[vDn BlDnvpeϑ/f gPvO@weSS[ 2 , 3 ] 0DnKNX[(W]_'` N[hQvNfN0{|Wv/f(WnT*N;mRvMRT~_gTDn~_gagNNnx[yv-NT*N;mRv _YeT[^DnO_(WgyBlvch N0R gO[ 4 , 5 ] 0 ~_gnWNRĉR( C o n s t r a i n t S a t i s f a c t i o n a n d M i s s i o n P l a n P r o b l e m C S M P P ) SNwb~_gnWTNRĉRv~TsSBln@b g~_gagNNvNR[bvhS_ gO