国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于注意力機制的互特征融合旋轉機械故障檢測技術(shù)
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

河南省高等學(xué)校重點(diǎn)科研項目(23B460023)


Mutual feature fusion fault detection technique of rotating machinery based on attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    旋轉機制在生產(chǎn)生活中的應用愈加廣泛。但旋轉機械的存在應用環(huán)境較為復雜,生產(chǎn)環(huán)境惡劣,各部件相互影響,單一信號無(wú)法完整表現故障特征等問(wèn)題。針對此問(wèn)題,研究根據注意力機制構建卷積神經(jīng)網(wǎng)絡(luò ),采用多信號源進(jìn)行數據提取,將不同信號特征相互融合構建旋轉機械故障檢測模型。實(shí)驗結果表明,構建模型的故障分類(lèi)準確率為99.92%,比第二優(yōu)的算法高出1.89%,數據進(jìn)行傅里葉變換后的檢測精度平均提升了17.32%。由此可得,構建的故障檢測模型能夠有效提取并融合不同數據采集的故障特征,能夠大幅提升旋轉機械的故障檢測精度,且將數據特征融合模塊加入模型中能夠有效減少單獨計算的運行成本,提高運算速度。減少了因機械故障產(chǎn)生的生產(chǎn)安全事故,可以有效提升產(chǎn)品質(zhì)量,提高企業(yè)的市場(chǎng)競爭力。

    Abstract:

    Rotation mechanism is more and more widely used in production and life. However, the application environment of rotating machinery is more complex, the production environment is harsh, the components affect each other, and a single signal can not complete the performance of fault characteristics. To solve this problem, a convolutional neural network was constructed according to the attention mechanism, multiple signal sources were used for data extraction, and different signal features were fused to build a rotating machinery fault detection model. The experimental results show that the fault classification accuracy of the constructed model is 99.92%, 1.89% higher than that of the second best algorithm, and the detection accuracy of the data after Fourier transform is improved by 17.32% on average. It can be concluded that the fault detection model constructed can effectively extract and fuse fault features of different data acquisition, which can greatly improve the fault detection accuracy of rotating machinery, and the addition of data feature fusion module to the model can effectively reduce the operating cost of separate calculation and improve the operation speed. It reduces the production safety accidents caused by mechanical failures, can effectively improve product quality and improve the market competitiveness of enterprises.

    參考文獻
    相似文獻
    引證文獻
引用本文

張玉華,剛潤振.基于注意力機制的互特征融合旋轉機械故障檢測技術(shù)計算機測量與控制[J].,2024,32(11):146-152.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-10-14
  • 錄用日期:2024-10-11
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
时尚| 湘潭县| 廉江市| 宝应县| 邢台市| 大关县| 宿迁市| 达拉特旗| 邵阳县| 江安县| 共和县| 安达市| 淮南市| 自贡市| 新野县| 桦甸市| 通道| 安陆市| 孙吴县| 常熟市| 武定县| 互助| 朝阳市| 石门县| 缙云县| 河源市| 婺源县| 鄢陵县| 资兴市| 桃江县| 大厂| 治县。| 淮南市| 平乡县| 邯郸市| 白玉县| 梅河口市| 山西省| 汉寿县| 舞阳县| 大丰市|