国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于BOA-DF-LightGBM的入侵檢測方法
DOI:
CSTR:
作者:
作者單位:

溫州大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

溫州市科研項目(ZF2022003)


Intrusion detection method based on BOA-DF-LightGBM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    入侵檢測模型在訓練時(shí)經(jīng)常面臨數據不平衡問(wèn)題,即其中正常行為的樣本數量遠遠超過(guò)異常入侵行為的樣本數量;為解決數據不平衡問(wèn)題,將深度森林和LightGBM結合作為入侵檢測模型,其中通過(guò)深度森林中的多粒度掃描生成更豐富的特征作為L(cháng)ightGBM的輸入,從而提升分類(lèi)器的性能。并且深度森林生成的特征表示可以提高少數類(lèi)樣本的可分性,配合 LightGBM 的權重調整機制,可以更好地處理不平衡數據問(wèn)題,并通過(guò)全局搜索能力強大的棕熊優(yōu)化算法對模型進(jìn)行參數調優(yōu)進(jìn)一步提升模型的預測準確度;經(jīng)UNSW_NB15數據集驗證所提方法,BOA-DF-LightGBM模型較其他模型指標更為優(yōu)異,預測準確率達到95.15%,較DF提升了近2%;為進(jìn)一步驗證其對數據不平衡問(wèn)題的能力,通過(guò)更嚴苛的數據不平衡實(shí)驗得出,BOA-DF-LightGBM模型在數據不平衡實(shí)驗中的準確率為94.23%,較DF提升了2.68%,較神經(jīng)網(wǎng)絡(luò )模型提升了3.42%;驗證了BOA-DF-LightGBM在數據不平衡情況下的有效性和優(yōu)異性。

    Abstract:

    Intrusion detection models often face the problem of data imbalance during training, that is, the number of samples of normal behavior far exceeds the number of samples of abnormal intrusion behavior. In order to solve the problem of data imbalance, the deep forest and LightGBM are combined as an intrusion detection model, in which richer features are generated by multi-granularity scanning in the deep forest as the input of LightGBM, so as to improve the performance of the classifier. Moreover, the feature representation generated by deep forest can improve the distinguishability of minority samples, and with the weight adjustment mechanism of LightGBM, it can better deal with unbalanced data problems, and the brown bear optimization algorithm with powerful global search ability is used to tune the parameters of the model to further improve the prediction accuracy of the model. The proposed method is verified on the UNSW_NB15 dataset, and the BOA-DF-LightGBM model is better than other model indicators, with the prediction accuracy reaching 95.15%, which is nearly 2% higher than DF. In order to further verify its ability to solve the problem of data imbalance, the accuracy of the BOA-DF-LightGBM model in the data imbalance experiment is 94.23%, which is 2.68% higher than that of DF and 3.42% higher than that of neural network model. The effectiveness and superiority of BOA-DF-LightGBM in the case of data imbalance are verified.

    參考文獻
    相似文獻
    引證文獻
引用本文

蔣子昂,朱志亮,翁德華,伍默然,葉南.基于BOA-DF-LightGBM的入侵檢測方法計算機測量與控制[J].,2024,32(12):88-95.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-06-28
  • 最后修改日期:2024-08-05
  • 錄用日期:2024-08-07
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
宣城市| 陆河县| 常熟市| 楚雄市| 根河市| 河北省| 武义县| 潮安县| 萨迦县| 鹿泉市| 天祝| 聊城市| 珲春市| 万盛区| 丹寨县| 安远县| 彭州市| 剑川县| 瓮安县| 绍兴县| 岚皋县| 崇州市| 江永县| 大厂| 武汉市| 宁晋县| 枞阳县| 崇阳县| 广宁县| 逊克县| 化州市| 灵璧县| 利川市| 古浪县| 崇礼县| 永仁县| 林甸县| 隆子县| 云林县| 根河市| 乐平市|