国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

低劑量CT圖像全變分深度展開(kāi)去噪網(wǎng)絡(luò )
DOI:
CSTR:
作者:
作者單位:

中北大學(xué) 信息與通信工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

山西省基礎研究計劃項目:202303021211148,202103021224204,20210302124403;山西省回國留學(xué)人員科研資助項目(2021-111)


Deep Total Variation Denoising Network for Low-Dose CT Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對低劑量CT圖像去噪進(jìn)行了研究,分析了神經(jīng)網(wǎng)絡(luò )去噪在偽影抑制中計算性能低、泛化性不足的問(wèn)題。采用各向異性全變分深度展開(kāi)去噪網(wǎng)絡(luò ),新方法結合圖像相鄰體素的邊緣特性,引入各向異性TV正則項保留圖像結構信息,避免各向同性TV導致的邊緣模糊,并通過(guò)Chambolle-Pock算法求解數學(xué)模型,適配深度展開(kāi)到卷積神經(jīng)網(wǎng)絡(luò )。此外,結合像素注意力機制進(jìn)行網(wǎng)絡(luò )優(yōu)化,捕捉圖像中的重要細節。經(jīng)實(shí)驗測試,基于Mayo 2016數據集,該方法在圖像去噪效果上優(yōu)于傳統方法及其他先進(jìn)網(wǎng)絡(luò )模型,在PSNR、SSIM和VIF等指標上表現更優(yōu),滿(mǎn)足低劑量CT圖像高質(zhì)量重建的需求。

    Abstract:

    A study was conducted on denoising low-dose CT images, analyzing the issues of low computational performance and insufficient generalization in neural network denoising for artifact suppression. An Anisotropic Total Variation Deep Unfolding Denoising Network was adopted, with the new method incorporating the edge characteristics of adjacent voxels by introducing an anisotropic TV regularization term to preserve the structural information of images and avoid edge blurring caused by isotropic TV. The Chambolle-Pock algorithm was employed to solve the mathematical model, adapting it for deep unfolding into convolutional neural networks. Additionally, a pixel attention mechanism was integrated for network optimization to capture important image details. Experimental tests based on the Mayo 2016 dataset demonstrated that this method outperforms traditional methods and other advanced network models in image denoising, showing superior performance in PSNR, SSIM, and VIF metrics. This method meets the requirements for high-quality reconstruction of low-dose CT images.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳涵,張鵬程,桂志國,劉祎.低劑量CT圖像全變分深度展開(kāi)去噪網(wǎng)絡(luò )計算機測量與控制[J].,2024,32(12):229-235.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-05-28
  • 最后修改日期:2024-07-09
  • 錄用日期:2024-07-09
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
桃园县| 新宾| 邮箱| 安阳县| 嘉荫县| 翼城县| 沭阳县| 安多县| 永济市| 东阿县| 武陟县| 庄河市| 中宁县| 墨脱县| 巴马| 通海县| 合肥市| 大英县| 武邑县| 馆陶县| 泊头市| 丰县| 清徐县| 白朗县| 仲巴县| 垫江县| 漯河市| 苏尼特左旗| 睢宁县| 古交市| 铁岭县| 澄迈县| 武邑县| 太仓市| 静宁县| 新乐市| 黑龙江省| 绥棱县| 古蔺县| 五家渠市| 湟中县|