国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

數學(xué)形態(tài)學(xué)和LMD算法下滾動(dòng)軸承全生命周期故障檢測研究
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on Full Life Cycle Fault Detection of Rolling Bearings under Mathematical Morphology and LMD Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    當滾動(dòng)軸承在高速旋轉時(shí),會(huì )產(chǎn)生振動(dòng)和摩擦,容易引起軸承表面的細微磨損和損傷,且在高溫、高壓、腐蝕等惡劣的工作環(huán)境中,會(huì )加劇軸承的磨損和腐蝕,使表面缺陷更加復雜和難以區分。為了準確監測和評估軸承的狀況、及早發(fā)現潛在的故障跡象,提出基于數學(xué)形態(tài)學(xué)和LMD算法的滾動(dòng)軸承全生命周期故障檢測方法。根據滾動(dòng)軸承的故障機理及特征,設置滾動(dòng)軸承故障檢測標準,模擬滾動(dòng)軸承全生命周期工作過(guò)程。分別采集滾動(dòng)軸承的表面圖像數據和內部振動(dòng)數據,通過(guò)濾波、增強等操作,完成初始工作參數的預處理。利用數學(xué)形態(tài)學(xué)基于形狀特征提取滾動(dòng)軸承表面圖像的微小特征,包括表面形狀和微小細節結構等,通過(guò)LMD算法分解復雜信號為多個(gè)單一調頻和窄帶調頻分量,提取峭度、頻率等關(guān)鍵特征。結合數學(xué)形態(tài)學(xué)和LMD算法可以全方位地提取滾動(dòng)軸承在不同生命周期階段的故障特征,為故障診斷提供更為全面的信息。采用特征匹配的方式,得出滾動(dòng)軸承故障類(lèi)型、位置以及故障量的檢測結果。通過(guò)性能測試實(shí)驗得出結論:與當前的故障檢測方法相比,優(yōu)化設計方法的故障類(lèi)型誤檢率明顯降低,具有良好的故障檢測能力。

    Abstract:

    When rolling bearings rotate at high speed, they generate vibration and friction, which can easily cause minor wear and damage to the bearing surface. In harsh working environments such as high temperature, high pressure, and corrosion, it can exacerbate the wear and corrosion of the bearing, making surface defects more complex and difficult to distinguish. In order to accurately monitor and evaluate the condition of bearings and detect potential signs of faults early, a rolling bearing full life cycle fault detection method based on mathematical morphology and LMD algorithm is proposed. Based on the fault mechanism and characteristics of rolling bearings, set fault detection standards for rolling bearings and simulate the entire life cycle working process of rolling bearings. Collect surface image data and internal vibration data of rolling bearings separately, and complete the preprocessing of initial working parameters through filtering, enhancement, and other operations. Using mathematical morphology to extract small features of rolling bearing surface images based on shape features, including surface shape and small detail structures, and using LMD algorithm to decompose complex signals into multiple single frequency modulation and narrowband frequency modulation components, key features such as kurtosis and frequency are extracted. The combination of mathematical morphology and LMD algorithm can comprehensively extract the fault characteristics of rolling bearings at different life cycle stages, providing more comprehensive information for fault diagnosis, and using feature matching to obtain detection results of rolling bearing fault types, positions, and amounts. The conclusion drawn from performance testing experiments is that compared with current fault detection methods, the optimized design method significantly reduces the false detection rate of fault types and has good fault detection capabilities.

    參考文獻
    相似文獻
    引證文獻
引用本文

嚴峰軍.數學(xué)形態(tài)學(xué)和LMD算法下滾動(dòng)軸承全生命周期故障檢測研究計算機測量與控制[J].,2024,32(12):50-56.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-05-24
  • 最后修改日期:2024-07-04
  • 錄用日期:2024-07-05
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
海丰县| 东乌| 大兴区| 阳泉市| 沙田区| 三江| 济阳县| 柞水县| 安塞县| 四会市| 永修县| 巴里| 吉水县| 凌云县| 宁远县| 新丰县| 馆陶县| 大邑县| 岢岚县| 资溪县| 平谷区| 鞍山市| 京山县| 特克斯县| 河北区| 中阳县| 英吉沙县| 育儿| 嘉鱼县| 奉贤区| 通河县| 桦南县| 怀宁县| 赣州市| 南木林县| 来安县| 庆云县| 青州市| 天镇县| 陕西省| 寿阳县|