国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的室內樓梯檢測方法研究
DOI:
CSTR:
作者:
作者單位:

西安航空職業(yè)技術(shù)學(xué)院 航空制造學(xué)院,陜西 西安

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Study on indoor staircase detection method based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    移動(dòng)機器人視覺(jué)SLAM的樓梯建圖過(guò)程需要對樓梯特征進(jìn)行檢測識別,傳統的邊緣檢測、直線(xiàn)提取等樓梯檢測技術(shù)往往視角較為理想、背景較為簡(jiǎn)單,無(wú)法實(shí)現欄桿遮擋、復雜背景下的樓梯特征提取。為了解決以上問(wèn)題, 提出了一種可用于移動(dòng)機器人的改進(jìn)YOLOv5的樓梯目標檢測方法,在輸入端引入FenceMask數據增強策略,增加對遮擋樓梯的訓練樣本數量。通道注意力模塊CAM與空間注意力模塊SAM采用并行連接的方式組成注意力模塊CBAM,加強在復雜環(huán)境下對樓梯的特征提取能力。在預測端將NMS與WBF結合,將NMS篩選之后置信度較高且位置相鄰的邊框進(jìn)行融合為新的邊框,在滿(mǎn)足精度要求的情況下改善了Faster-RCNN與SSD檢測算法存在的單段多階樓梯檢測速度問(wèn)題。仿真表明改進(jìn)的YOLOv5s可以在模型大小18.4MB的情況下達到82.9%的平均精度,改進(jìn)的YOLOv5m在增大模型為45.5MB的情況下平均精度提高為86.5%,均可有效識別欄桿遮擋、復雜背景以及單段長(cháng)階梯。

    Abstract:

    Detection and recognition of the stair feature are needed in the mobile robot visual SLAM mapping. Traditional stair detection technologies, such as edge detection and line extraction, often used ideal visual angle and simple background. They cannot finish the stair feature extraction under the condition of the railing occlusion and complex background. In order to solve the above problems, a stair target improved detection method based on YOLOv5 used for the mobile robot is proposed in the paper. The FenceMask data enhancement strategy is introduced to increase the number of training samples for occluded stairs at the input end. The feature extraction ability of the stairs in complex environment is strengthened by introducing CBAM attention mechanism. The problem of "multiple inspection" of the single multi-step stairs occurring in Faster-RCNN and SSD are solved and improved by combining NMS and WBF at the prediction end. The simulation results show that an average accuracy 82.9% can be obtained under the condition of the model size 18.4MB in the improved YOLOv5. And the average accuracy of the improved yolov5m can be enhanced to 86.5% when the model size is 45.5MB. The improved YOLOv5 method in the paper can effectively identify railing occlusion, complex background and single long steps.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓飛燕,趙偉,吳子英.基于改進(jìn)YOLOv5的室內樓梯檢測方法研究計算機測量與控制[J].,2024,32(9):66-72.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-05-08
  • 最后修改日期:2024-06-13
  • 錄用日期:2024-06-14
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
雅江县| 龙川县| 洞头县| 高州市| 普兰县| 罗山县| 大英县| 安平县| 蒲城县| 裕民县| 建水县| 海伦市| 灵宝市| 高邑县| 曲阳县| 宁波市| 利津县| 神池县| 贞丰县| 泾源县| 陇南市| 英吉沙县| 云安县| 彝良县| 上蔡县| 繁昌县| 镇康县| 图木舒克市| 青铜峡市| 东明县| 明星| 清原| 东乡族自治县| 沙坪坝区| 舞钢市| 昌平区| 特克斯县| 静宁县| 淮安市| 高雄市| 长沙县|