国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)蜣螂算法的多區域空調系統需求響應DMPC供冷策略
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 建筑設備科學(xué)與工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP183?

基金項目:

國家自然科學(xué)基金項目(52278125),陜西省自然科學(xué)基礎研究基金(2022JM-283),陜西省建設廳科技計劃發(fā)展項目(2020-K17)


Improved Dung Beetle Algorithm-Based Demand Response Cooling Strategy for Multi-Zone Air Conditioning Systems Using Distributed Model Predictive Control
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對夏季電網(wǎng)高峰期間辦公建筑空調系統的峰值負荷造成電網(wǎng)短缺等問(wèn)題,提出一種基于需求響應的多區域空調系統分布式模型預測控制(DMPC)供冷策略;以西安市某辦公建筑的5個(gè)區域為研究對象,分別建立該辦公建筑的物理模型及空調系統能耗數學(xué)模型,并驗證模型的準確性;構建多區域空調系統仿真模型,優(yōu)化目標為最小化空調系統運行能耗和室溫與設定值的誤差最小;選取蜣螂算法作為優(yōu)化工具,并針對該算法存在全局搜索速度慢、易早收斂和陷入局部最優(yōu)等缺點(diǎn);采取混沌映射策略?xún)?yōu)化種群初始化,生成更加均勻的種群以提升種群個(gè)體質(zhì)量;利用螺旋搜索策略對蜣螂的覓食和繁殖行為進(jìn)行更新,進(jìn)一步擴展算法的全局搜索性;同時(shí)引入隨機擾動(dòng)和自適應因子改進(jìn)蜣螂的偷竊行為,改善算法易陷入局部最優(yōu)等問(wèn)題。運用改進(jìn)后的蜣螂算法對DMPC的滾動(dòng)優(yōu)化進(jìn)行優(yōu)化求解,并與PID溫度反饋控制進(jìn)行對比,驗證DMPC的控制性能。實(shí)驗結果表明,在所研究的5個(gè)區域中,DMPC比PID控制方法的響應速度分別提升了8.91%、8.65%、12.04%、5.79%和1.79%。結合需求響應策略利用分時(shí)電價(jià)進(jìn)行調控,提出溫度與啟停優(yōu)化調控策略對空調系統的峰值負荷進(jìn)行削峰轉移。結果表明兩種預冷啟停優(yōu)化策略的峰時(shí)負荷轉移率分別為27.29%和29.16%,可以有效地將系統高峰時(shí)段的冷負荷轉移到其他時(shí)段,降低電網(wǎng)運行壓力。

    Abstract:

    To address the issue of peak load demands on power grids during summer caused by office building air conditioning systems, a demand response-based Distributed Model Predictive Control (DMPC) cooling strategy for multi-zone systems was proposed. The study used a physical model and a mathematical model of energy consumption for the air conditioning systems in five zones of an office building in Xi"an, validating their accuracy. The multi-zone air conditioning system simulation aimed to minimize operational energy consumption and the temperature deviation from set points. The dung beetle algorithm was selected for optimization, overcoming its slow global search, premature convergence, and susceptibility to local optima through chaotic mapping for population initialization, helical search strategies for foraging and breeding behaviors, and random perturbations with adaptive factors to improve exploratory behavior. Enhanced with these modifications, the dung beetle algorithm improved the rolling optimization of DMPC, which outperformed PID temperature feedback control, increasing response speeds by 8.91%, 8.65%, 12.04%, 5.79%, and 1.79% in the respective zones. Additionally, demand response strategies incorporating time-of-use electricity rates suggested temperature and start-stop optimization strategies to shift peak loads, achieving peak load transfer rates of 27.29% and 29.16% with the precooling start-stop strategies, effectively redistributing peak cooling loads to off-peak periods and alleviating pressure on the power grid.

    參考文獻
    相似文獻
    引證文獻
引用本文

王鑫洋,閆秀英,吳曉雪,侯帥旗.基于改進(jìn)蜣螂算法的多區域空調系統需求響應DMPC供冷策略計算機測量與控制[J].,2024,32(10):250-262.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-04-26
  • 最后修改日期:2024-05-16
  • 錄用日期:2024-05-21
  • 在線(xiàn)發(fā)布日期: 2024-10-30
  • 出版日期:
文章二維碼
茂名市| 资溪县| 咸阳市| 麟游县| 信丰县| 鹤峰县| 锦州市| 玛沁县| 铜陵市| 湖南省| 竹溪县| 昭通市| 绥阳县| 巩留县| 克拉玛依市| 辉南县| 涿州市| 大足县| 盱眙县| 北海市| 克拉玛依市| 象州县| 忻州市| 延津县| 诸城市| 浦县| 香河县| 开阳县| 遂昌县| 阿拉善右旗| 普兰店市| 大石桥市| 鹿邑县| 清徐县| 九龙县| 民勤县| 葫芦岛市| 嫩江县| 广丰县| 金昌市| 虹口区|