国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于物理信息的時(shí)間卷積神經(jīng)網(wǎng)絡(luò )風(fēng)電功率預測
DOI:
CSTR:
作者:
作者單位:

溫州大學(xué)電氣數字化設計技術(shù)國家地方聯(lián)合工程研究中心

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

溫州市科研項目(ZF2022003);工業(yè)控制技術(shù)國家重點(diǎn)實(shí)驗室開(kāi)放課題(ICT2022B65);溫州市高水平創(chuàng )新團隊項目(溫委人(2020〕3 號):電氣數字化設計技術(shù)國家地方聯(lián)合工程


Temporal Convolutional Neural Network for Wind Power Prediction based on Physical Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    由于風(fēng)力的不確定性和隨機性,風(fēng)電功率預測對電力系統的穩定運行至關(guān)重要;為提高風(fēng)電功率模型的預測精度;對風(fēng)力發(fā)電機的數學(xué)模型進(jìn)行研究后,將物理建模和數據驅動(dòng)建模相結合,提出一種基于物理信息的時(shí)間卷積神經(jīng)網(wǎng)絡(luò )模型用于風(fēng)力發(fā)電機的功率預測;采用將風(fēng)力發(fā)電機的轉子運動(dòng)方程嵌入時(shí)間卷積神經(jīng)網(wǎng)絡(luò )的損失函數,從而提高模型的預測能力,泛化性和物理可解釋性;并在Simulink仿真軟件中搭建風(fēng)力發(fā)電機物理模型以獲取實(shí)驗數據樣本,經(jīng)同工況實(shí)驗和外推實(shí)驗表明,基于物理信息的時(shí)間卷積神經(jīng)網(wǎng)絡(luò )模型相較于原時(shí)間卷積神經(jīng)網(wǎng)絡(luò )模型的同工況實(shí)驗均方根誤差下降50.8%,外推實(shí)驗的均方根誤差下降55.2%,顯著(zhù)提高了風(fēng)力功率預測的準確性。

    Abstract:

    Due to the uncertainty and randomness of wind power, wind power prediction is very important for the stable operation of power system. To improve the prediction accuracy of wind power model; After studying the mathematical model of wind turbine, combining physical modeling and data-driven modeling, a time convolutional neural network model based on physical information was proposed for the power prediction of wind turbine. The rotor motion equation of the wind turbine is embedded into the loss function of the temporal convolutional neural network, so as to improve the prediction ability, generalization and physical interpretability of the model. The physical model of wind turbine is built in Simulink simulation software to obtain experimental data samples. The same working condition experiment and extrapolation experiment show that compared with the original time convolutional neural network model, the root mean square error of the time convolutional neural network model based on physical information is reduced by 50.8%, and the root mean square error of the extrapolation experiment is reduced by 55.2%. The accuracy of wind power prediction is significantly improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

張維通,閆正兵,張正江,黃世沛,戴瑜興.基于物理信息的時(shí)間卷積神經(jīng)網(wǎng)絡(luò )風(fēng)電功率預測計算機測量與控制[J].,2024,32(11):101-108.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-04-24
  • 最后修改日期:2024-05-29
  • 錄用日期:2024-05-31
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
龙海市| 无极县| 米泉市| 沙湾县| 瑞丽市| 噶尔县| 肇东市| 南昌市| 靖安县| 双辽市| 定襄县| 乌恰县| 麻江县| 榆林市| 洛隆县| 桂东县| 文山县| 土默特左旗| 墨江| 汪清县| 祁阳县| 老河口市| 嘉禾县| 茶陵县| 永清县| 霸州市| 安陆市| 花莲市| 晴隆县| 沈阳市| 北京市| 合川市| 修文县| 五峰| 安顺市| 宁津县| 清流县| 鹿泉市| 措勤县| 宁乡县| 山阳县|