国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于多標簽集成學(xué)習的螺旋CT機故障診斷研究
DOI:
CSTR:
作者:
作者單位:

中南大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on Fault Diagnosis of Spiral CT Machine Based on Multi label Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    醫學(xué)應用領(lǐng)域計算機X線(xiàn)斷層攝影機(Computed tomography camera,CT)螺旋機由于復雜的結構和較高的集成度在實(shí)際故障定位和檢測中具有極高的難度。為解決這個(gè)問(wèn)題,研究對螺旋CT機故障定位與檢測問(wèn)題進(jìn)行了分析,提出一種多標簽集成學(xué)習方法。該方法采用了折半查找算法獲取螺旋CT機的故障數據,同時(shí)有效結合現有的卷積神經(jīng)網(wǎng)絡(luò )和循環(huán)神經(jīng)網(wǎng)絡(luò )的文本表征網(wǎng)絡(luò ),通過(guò)自適應標簽關(guān)系增強方法找出標簽間的依賴(lài)關(guān)系,并利用加權約簡(jiǎn)標簽集的不平衡學(xué)習能有效杜絕模型可擴展性低和模型泛化性弱等問(wèn)題。經(jīng)損失值、準確度、運行時(shí)間、精準率、靈敏度五個(gè)指標的實(shí)例測試結果表明,研究所給出的方法均相對于其他三種較為創(chuàng )新的多標簽集成學(xué)習方法更具優(yōu)勢,且提升數值均超過(guò)2%,訓練集的各個(gè)指標數據均比測試集相應數值更高。訓練集和測試集中空時(shí)網(wǎng)絡(luò )聚類(lèi)約簡(jiǎn)的多標簽集成學(xué)習方法的精準率分別為93.12%和87.26%,召回率分別為86.35%和84.25%。該方法能精準快速查找螺旋CT機的故障類(lèi)型和故障部位,極大程度降低維修成本和延長(cháng)設備的使用年限。

    Abstract:

    Computed tomography camera (CT) spiral machines in the field of medical applications face extremely high difficulties in actual fault localization and detection due to their complex structure and high integration. To address this issue, an analysis was conducted on the fault localization and detection of CT spiral machines, and a multi label ensemble learning method was proposed. This method uses a half search algorithm to obtain fault data of CT spiral machines, while effectively combining existing convolutional neural networks and recurrent neural networks for text representation. Through an adaptive label relationship enhancement method, the dependency relationships between labels are identified, and the imbalanced learning of weighted reduced label sets can effectively eliminate problems such as low model scalability and weak model generalization. The test results of five indicators, including loss value, accuracy, running time, accuracy, and sensitivity, show that the methods proposed in the study have more advantages compared to the other three innovative multi label ensemble learning methods, and the improvement values all exceed 2%. The data of each indicator in the training set are higher than the corresponding values in the test set. The accuracy of the multi label ensemble learning method for spatiotemporal network clustering reduction in the training set and test set is 93.12% and 87.26%, respectively, with recall rates of 86.35% and 84.25%. This method can accurately and quickly identify the types and locations of faults in CT spiral machines, greatly reducing maintenance costs and extending the service life of the equipment.

    參考文獻
    相似文獻
    引證文獻
引用本文

閆小如.基于多標簽集成學(xué)習的螺旋CT機故障診斷研究計算機測量與控制[J].,2024,32(11):48-55.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-04-11
  • 最后修改日期:2024-05-20
  • 錄用日期:2024-05-21
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
五原县| 通辽市| 张家港市| 朔州市| 安多县| 金堂县| 重庆市| 偏关县| 吉林省| 夏邑县| 常熟市| 蒙阴县| 平罗县| 毕节市| 紫金县| 乳山市| 长乐市| 元谋县| 三穗县| 承德市| 冷水江市| 汉阴县| 康乐县| 莱西市| 宜城市| 金沙县| 光山县| 左权县| 阿巴嘎旗| 灵寿县| 达州市| 泽州县| 长兴县| 和田市| 孝感市| 巧家县| 彰武县| 称多县| 绩溪县| 醴陵市| 古交市|