国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于CNN-A-BiLSTM的無(wú)刷直流電機故障診斷方法研究
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

廣西壯族自治區科技計劃項目(桂科AB20159008)


Research on Diagnosis Method of Brushless DC Motor Based on CNN-A-BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    無(wú)刷直流電機是大型設備重要的動(dòng)力裝置之一,電機的運行狀態(tài)與設備的運行狀態(tài)高度一致。但當前現有的電機故障診斷方法難以在多電機或存在電磁干擾的環(huán)境下對電機做出準確的狀態(tài)判斷。為了實(shí)現復雜環(huán)境的無(wú)刷直流電機狀態(tài)診斷,研究融合了卷積神經(jīng)網(wǎng)絡(luò )算法和長(cháng)短期記憶網(wǎng)絡(luò )算法。研究通過(guò)長(cháng)短期記憶網(wǎng)絡(luò )算法的雙向傳播捕捉復雜環(huán)境對電機的影響特征,從而提高模型的診斷精準度。實(shí)驗結果表明,提出模型在機電設備故障診斷數據集上的平均收斂時(shí)間為8.91min,在電機故障數據集上的平均收斂時(shí)間為12.66min,收斂時(shí)間均低于同組對照模型。其次提出模型的F1值為84.17%,比對照模型分別高出0.87%和5.08%。此外,在對電機故障前后電壓檢測情況對比中,提出模型對電機故障發(fā)生時(shí)的檢測結果更為詳細。根據實(shí)驗結果可以得出,研究提出的電機診斷模型具有優(yōu)秀的性能,滿(mǎn)足電機診斷行業(yè)的精準度需求。

    Abstract:

    Brushless DC motor is one of the important power devices for large equipment, and the operating status of the motor is highly consistent with the operating status of the equipment. However, current motor fault diagnosis methods are difficult to make accurate state judgments on motors in environments with multiple motors or electromagnetic interference. In order to achieve state diagnosis of brushless DC motors in complex environments, a fusion of convolutional neural network algorithm and long short-term memory network algorithm was studied. Researching the bidirectional propagation of long short-term memory network algorithms to capture the impact characteristics of complex environments on motors, thereby improving the diagnostic accuracy of the model. The experimental results show that the average convergence time of the proposed model on the mechanical and electrical equipment fault diagnosis dataset is 8.91 minutes, and the average convergence time on the motor fault dataset is 12.66 minutes, both of which are lower than the control models in the same group. Secondly, the F1 value of the proposed model is 84.17%, which is 0.87% and 5.08% higher than the control model, respectively. In addition, in the comparison of voltage detection before and after motor faults, the proposed model provides more detailed detection results when motor faults occur. According to the experimental results, it can be concluded that the proposed motor diagnosis model has excellent performance and meets the accuracy requirements of the motor diagnosis industry.

    參考文獻
    相似文獻
    引證文獻
引用本文

覃仕明,馬鵬.基于CNN-A-BiLSTM的無(wú)刷直流電機故障診斷方法研究計算機測量與控制[J].,2024,32(9):118-124.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-04-01
  • 最后修改日期:2024-04-25
  • 錄用日期:2024-04-26
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
饶河县| 汪清县| 商洛市| 黑水县| 砚山县| 安新县| 淮安市| 宜兴市| 荔浦县| 麟游县| 娱乐| 新绛县| 抚宁县| 巴青县| 金溪县| 怀安县| 虞城县| 庄浪县| 朝阳县| 宁都县| 方城县| 南丰县| 南京市| 阜新市| 苏尼特左旗| 太康县| 新沂市| 建水县| 鞍山市| 文登市| 南涧| 台州市| 浦县| 沂水县| 穆棱市| 安图县| 普兰店市| 佛坪县| 牙克石市| 高陵县| 班玛县|