国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于知識圖譜的水產(chǎn)養殖病害診斷技術(shù)研究
DOI:
CSTR:
作者:
作者單位:

青島科技大學(xué) 信息科學(xué)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

山東省重點(diǎn)研發(fā)計劃(科技示范工程)課題(2021SFGC0701),青島市海洋科技創(chuàng )新專(zhuān)項(22-3-3-hygg-3-hy)


Research on Diagnosis Technology of Aquaculture Diseases Based on Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水產(chǎn)養殖病害是影響水產(chǎn)養殖效益的重要因素,由于水產(chǎn)養殖病害文本數據雜亂無(wú)章,無(wú)法快速準確定位疾病原因,從而耽誤診斷和治療時(shí)機,導致水產(chǎn)養殖質(zhì)量和產(chǎn)量下降。為解決上述問(wèn)題,深入知識圖譜的工作原理和模型特征,采用知識圖譜技術(shù)完成水產(chǎn)養殖病害診斷總體方案設計,建立水產(chǎn)病害語(yǔ)料庫,引入H-BIO標注策略,完成標注方案設計、改進(jìn)BiLSTM模型構建,進(jìn)行實(shí)體關(guān)系抽取和水產(chǎn)病害模型訓練,完成水產(chǎn)養殖病害知識圖譜可視化設計,并進(jìn)行水產(chǎn)病害聯(lián)合抽取實(shí)驗。實(shí)驗結果表明:基于知識圖譜的改進(jìn)BiLSTM模型在實(shí)體關(guān)系抽取方面效果較好、可靠性較高,有效提高了水產(chǎn)病害聯(lián)合抽取準確率,構建了水產(chǎn)養殖病害可視化知識圖譜,能夠輔助作業(yè)人員快速準確進(jìn)行水產(chǎn)病害診斷和治療,對提升水產(chǎn)養殖生產(chǎn)效益具有十分重要的作用。

    Abstract:

    Diseases in aquaculture are an important factor affecting the efficiency of aquaculture. Due to the disorderly text data of aquaculture diseases, it is difficult to quickly and accurately locate the causes of diseases, which delays diagnosis and treatment, leading to a decrease in the quality and yield of aquaculture. To solve the above problems, we delve into the working principles and model features of knowledge graphs, use knowledge graph technology to complete the overall design of aquaculture disease diagnosis, establish a corpus of aquaculture diseases, introduce the H-BIO annotation strategy, complete the annotation scheme design, improve the BiLSTM model construction, extract entity relationships and train aquaculture disease models, complete the visualization design of aquaculture disease knowledge graphs, and conduct experiments on joint extraction of aquaculture diseases. The experimental results show that the improved BiLSTM model based on knowledge graph has good performance and high reliability in entity relationship extraction, effectively improving the accuracy of joint extraction of aquatic diseases. A visual knowledge graph of aquatic disease has been constructed, which can assist operators in quickly and accurately diagnosing and treating aquatic diseases. It plays a very important role in improving the production efficiency of aquaculture.

    參考文獻
    相似文獻
    引證文獻
引用本文

陸光豪,李海濤,趙瑞金.基于知識圖譜的水產(chǎn)養殖病害診斷技術(shù)研究計算機測量與控制[J].,2024,32(9):101-107.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-07
  • 最后修改日期:2024-04-14
  • 錄用日期:2024-04-22
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
资中县| 海晏县| 商丘市| 交口县| 南投市| 华宁县| 井冈山市| 阿拉善左旗| 屏东市| 西华县| 司法| 云安县| 油尖旺区| 津市市| 册亨县| 博湖县| 崇仁县| 湘西| 东安县| 肥乡县| 安西县| 偃师市| 河西区| 吉水县| 新源县| 海城市| 浦城县| 华容县| 嵊州市| 枣阳市| 凌源市| 和田市| 滕州市| 甘谷县| 宜丰县| 广元市| 定襄县| 宜黄县| 沁源县| 巫溪县| 武邑县|