国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv7的玉米作物害蟲(chóng)檢測研究
DOI:
CSTR:
作者:
作者單位:

哈爾濱商業(yè)大學(xué)輕工學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

哈爾濱商業(yè)大學(xué)博士啟動(dòng)項目(2019DS087) 黑龍江省哲學(xué)社會(huì )科學(xué)規劃項目(23YSD245)


A Study on Corn Crop Pest Detection Based On Improved YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    摘要:面對玉米作物害蟲(chóng)檢測中目標體積較小、形態(tài)多變且種類(lèi)分布不均的情況,現有檢測器會(huì )出現誤檢、漏檢等問(wèn)題。針對以上問(wèn)題,提出了基于YOLOv7的玉米作物蟲(chóng)害檢測算法SPD-YOLOv7。制作收集玉米害蟲(chóng)數據集,采用數據增強方法擴充數據集。引入SPD-Conv模塊,替換原先骨干和頭部網(wǎng)絡(luò )中的部分跨步卷積層,減少隨著(zhù)網(wǎng)絡(luò )加深細節信息的丟失,提高模型獲取小目標特征和位置信息的能力。將ELAN-W模塊與CBAM注意力機制結合,使網(wǎng)絡(luò )更好地學(xué)習害蟲(chóng)特征,抑制背景信息,關(guān)注目標本身。改進(jìn)后的YOLOv7網(wǎng)絡(luò )模型準確率達到了98.38%,平均精度均值達到了99.4%。相較于原始的YOLOv7模型,準確性和平均精度均值分別提高了2.46、3.19個(gè)百分點(diǎn),與Faster-RCNN、YOLOv3、YOLOv4、YOLOv5和YOLOv6主流算法的檢測精度相比更具優(yōu)勢,且滿(mǎn)足實(shí)時(shí)性。實(shí)驗結果說(shuō)明改進(jìn)算法有利于快速識別玉米作物的蟲(chóng)害分布,可用于實(shí)際農田間的害蟲(chóng)實(shí)時(shí)監測。

    Abstract:

    Abstract: Faced with the challenges of small target volumes, diverse morphologies, and uneven distributions of pests in maize crop pest detection, existing detectors suffer from issues such as false positives and false negatives. In response to these challenges, the SPD-YOLOv7 algorithm for maize crop pest detection based on YOLOv7 is proposed. A dataset of maize pests is curated and augmented using data augmentation techniques. The SPD-Conv module is introduced, replacing some of the stride convolution layers in the original backbone and head networks to mitigate the loss of detailed information as the network deepens, thereby enhancing the model's ability to capture features and positional information of small targets. By integrating the ELAN-W module with the CBAM attention mechanism, the network is better equipped to learn pest features, suppress background noise, and focus on the target itself. The improved YOLOv7 network achieves an accuracy of 98.38% and a mean average precision of 99.4%. Compared to the original YOLOv7 model, the accuracy and mean average precision have improved by 2.46 and 3.19 percentage points, respectively. The enhanced algorithm demonstrates superior detection accuracy compared to mainstream algorithms such as Faster-RCNN, YOLOv3, YOLOv4, YOLOv5, and YOLOv6, while maintaining real-time performance. Experimental results indicate that the proposed algorithm facilitates rapid identification of maize crop pest distributions and can be applied for real-time pest monitoring in agricultural fields.

    參考文獻
    相似文獻
    引證文獻
引用本文

宮妍,翟俊杰,王凱,李玉.基于改進(jìn)YOLOv7的玉米作物害蟲(chóng)檢測研究計算機測量與控制[J].,2024,32(9):58-65.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-03-29
  • 錄用日期:2024-03-29
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
扬中市| 尖扎县| 乌什县| 普安县| 德兴市| 昆明市| 郁南县| 阿鲁科尔沁旗| 沽源县| 大丰市| 屏南县| 临沭县| 连城县| 汪清县| 介休市| 西青区| 隆德县| 来凤县| 潞西市| 翁牛特旗| 开原市| 亳州市| 长垣县| 那坡县| 保山市| 绵阳市| 邵东县| 武陟县| 张家港市| 孟连| 获嘉县| 河津市| 枝江市| 子洲县| 清苑县| 奉新县| 麻栗坡县| 东莞市| 上饶市| 文水县| 宝兴县|