国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于傳感器技術(shù)和I-LSTM算法的風(fēng)電機設備運行故障檢測及診斷研究
DOI:
CSTR:
作者:
作者單位:

秦皇島港股份有限公司第九港務(wù)分公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

河北省科技計劃項目(2015ZC20809)


Equipment operation fault detection and diagnosis research based on sensor technology and machine learningSUN Ye1 ?? ZHAO Hua2??? GUO Lin3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    有效的故障檢測與診斷將極大地提高風(fēng)電機設備運行效率和可靠性,降低維修成本,保障生產(chǎn)過(guò)程的順利進(jìn)行。為實(shí)現高效率的設備故障預警與維護,研究基于傳感器技術(shù)和機器學(xué)習的設備運行故障檢測及診斷方法。首先對箱型圖法和小波包降噪法等對傳感器傳輸的數據信號進(jìn)行預處理。然后利用雙向長(cháng)短時(shí)記憶網(wǎng)絡(luò )構建時(shí)間序列預測模型。最后,基于預測殘差和貝葉斯概率理論,設計了信號異常識別策略,以實(shí)現實(shí)時(shí)監測與故障預警。對提出的風(fēng)電機設備故障監測模型進(jìn)行性能分析,結果表明,研究所構建模型的診斷準確率為98.88%,無(wú)漏診情況,誤診率在1.5%以下,在提前14小時(shí)以上進(jìn)行預警。研究模型能夠及時(shí)對風(fēng)電機設備故障進(jìn)行預警,同時(shí)能夠在較高的準確率下對故障進(jìn)行診斷。

    Abstract:

    Effective fault detection and diagnosis will greatly improve the operational efficiency and reliability of wind turbine equipment, reduce maintenance costs, and ensure the smooth progress of the production process. To achieve efficient equipment fault warning and maintenance, research on equipment operation fault detection and diagnosis methods based on sensor technology and machine learning. Firstly, preprocess the data signals transmitted by sensors using methods such as box plots and wavelet packet denoising. Then, a time series prediction model is constructed using a bidirectional long short-term memory network. Finally, based on prediction residuals and Bayesian probability theory, a signal anomaly recognition strategy was designed to achieve real-time monitoring and fault warning. Performance analysis was conducted on the proposed wind turbine equipment fault monitoring model, and the results showed that the diagnostic accuracy of the model constructed by the research institute was 98.88%, with no missed diagnosis and a misdiagnosis rate below 1.5%. Early warning was given at least 14 hours in advance. The research model can provide timely warning for wind turbine equipment faults and diagnose faults with high accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫曄,趙華,郭琳.基于傳感器技術(shù)和I-LSTM算法的風(fēng)電機設備運行故障檢測及診斷研究計算機測量與控制[J].,2024,32(9):51-57.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-02-19
  • 最后修改日期:2024-03-08
  • 錄用日期:2024-03-11
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
平邑县| 灵石县| 调兵山市| 木兰县| 黄山市| 新龙县| 黄平县| 应用必备| 横峰县| 眉山市| 禹城市| 和平区| 东宁县| 天全县| 岗巴县| 娱乐| 原阳县| 清原| 堆龙德庆县| 手游| 共和县| 盐津县| 环江| 漯河市| 泰州市| 乾安县| 鲁山县| 文化| 齐齐哈尔市| 眉山市| 湟源县| 扎囊县| 根河市| 银川市| 萨嘎县| 都江堰市| 桂林市| 六安市| 嵊泗县| 呼玛县| 江山市|