国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于多尺度工況增強網(wǎng)絡(luò )及Informer的設備剩余壽命預測
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

廣東省市場(chǎng)監督管理局科技項目(2024CZ11)茂名市科技計劃項目(230506164551410)


Device RUL prediction based on multi-scale work condition enhancement network and Informer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    設備RUL預測在提高設備可靠性、安全性、降低維護成本等方面具有重要意義。通過(guò)提前發(fā)現設備的健康狀態(tài)和潛在故障,RUL預測有助于降低突發(fā)故障風(fēng)險、延長(cháng)設備壽命,提高工作效率,確保任務(wù)正常運行。然而在面對設備越來(lái)越復雜,采集到的傳感器數據維度越來(lái)越高,傳統方法和某些深度學(xué)習方法在處理特征關(guān)系、長(cháng)時(shí)間序列數據和挖掘重要傳感器數據方面存在限制。為了提高預測準確性,提出一種基于MWCEN結合Informer的混合模型——MWCEN-Informer,MWCEN通過(guò)動(dòng)態(tài)工況編碼算法對設備時(shí)序數據進(jìn)行工況編碼,對設備傳感器進(jìn)行一維多尺度混合卷積充分提取特征信息,使用多分支通道注意力機制增強有效特征,增強后的傳感器數據輸入Informer用于分析設備傳感器時(shí)序數據的關(guān)聯(lián)性,以實(shí)現更準確的設備RUL預測。以基于C-MAPSS的通用渦扇發(fā)動(dòng)機數據集進(jìn)行驗證,結果表明,該模型在四個(gè)子集上的RMSE平均減少了5.5%,S-Score平均減少了4.7%,能有效提高設備在復雜工況和復雜故障下的RUL預測精度。

    Abstract:

    Device RUL prediction is important in improving device reliability, safety, and reducing maintenance costs. By discovering the health status and potential faults of device in advance, RUL prediction helps reduce the risk of sudden failure, extend device life, improve work efficiency, and ensure normal operation of tasks. However, in the face of the increasing complexity of device and the increasing dimensionality of collected sensor data, traditional methods and certain deep learning methods have limitations in handling feature relationships, long time series data and mining important sensor data. In order to improve the prediction accuracy, a hybrid model based on MWCEN combined with Informer - MWCEN-Informer is proposed. MWCEN encodes the device time series data with dynamic work condition coding algorithm, fully extracts the feature information by one-dimensional multi-scale hybrid convolution of the device sensor information, the effective features are enhanced using the multi-branch channel attention mechanism, and the enhanced sensor data are input into Informer for analysing the correlation of the device sensor timing data to achieve more accurate device RUL prediction. Validation is carried out with a generic turbofan engine data set based on C-MAPSS, and the results show that the model reduces the RMSE by an average of 5.5% and the S-Score by an average of 4.7% on the four subsets, which effectively improves the RUL prediction accuracy of the device under complex operating conditions and complex faults.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉付渝杰.基于多尺度工況增強網(wǎng)絡(luò )及Informer的設備剩余壽命預測計算機測量與控制[J].,2024,32(8):115-122.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-02-19
  • 最后修改日期:2024-03-20
  • 錄用日期:2024-03-22
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
定安县| 华容县| 宾阳县| 雷州市| 南溪县| 绿春县| 西昌市| 华容县| 沧源| 锡林浩特市| 开封市| 奈曼旗| 黄浦区| 都江堰市| 蒲城县| 留坝县| 天津市| 新兴县| 丹巴县| 凤山县| 东辽县| 岳阳县| 大同市| 沅江市| 彩票| 青田县| 林西县| 稷山县| 兴义市| 商水县| 西丰县| 金溪县| 石家庄市| 宣威市| 黄骅市| 邯郸市| 和林格尔县| 万全县| 昔阳县| 瓮安县| 乐清市|