国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于Transformer-Bi-LSTM模型的武器裝備剩余壽命預測方法
DOI:
CSTR:
作者:
作者單位:

上海機電工程研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Weaponry residual life prediction method based on Transformer-Bi-LSTM model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    武器裝備擔負保衛國土安全的重要使命,其保持穩定運行狀態(tài)具有重大國防、政治意義;因其裝備運行狀態(tài)不便中斷、故障定位過(guò)程復雜,使得傳統維修方式效率較低;裝備使用數據具有連續性、長(cháng)期性、不平穩性,甚至一些深度學(xué)習模型無(wú)法處理其中的退化狀態(tài)歷史依賴(lài)與關(guān)聯(lián)問(wèn)題;通過(guò)構建元器件層級的剩余壽命預測架構,對特征工程、退化指標構建以及Transformer-Bi-LSTM模型開(kāi)展研究,采用距離編碼技術(shù),實(shí)現針對深度學(xué)習模型的技術(shù)創(chuàng )新,優(yōu)化模型預測效果;基于某型武器裝備主要器件正常試樣數據,進(jìn)行本方法分析驗證,在器件已運行時(shí)間達到90%設計試驗壽命長(cháng)度時(shí)能夠進(jìn)行有效且準確的剩余壽命預測,所提方法滿(mǎn)足武器裝備器件壽命預警及更換提醒、保障裝備戰備完好性的應用需求。

    Abstract:

    Weaponry is responsible for the important mission of safeguarding national security, and its stable operation is of great nation defense and political significance. Due to the inconvenient interruption of the operation status of the equipment and the complex fault location process, the traditional maintenance method is inefficient. The equipment usage data is continuous, long-term, and instability, and some deep learning models cannot deal with the historical dependence and association of degraded states. By constructing the remaining life prediction architecture at the component level, the feature engineering, degradation index construction and Transformer-Bi-LSTM model are studied, and distance coding are used to realize the technological innovation of the deep learning model and optimize the prediction effect of the model. Based on the normal sample data of the primary components of a weapon equipment, this method has been analyzed and validated. It can effectively and accurately predict the remaining life when the device has been in operation for 90% of its designated test life span. The proposed method meets the requirements for early warning and replacement reminders for weapon equipment devices, ensuring equipment combat readiness integrity.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁玉昕,程躍兵,熊敏艷,高王升,張昱彤.基于Transformer-Bi-LSTM模型的武器裝備剩余壽命預測方法計算機測量與控制[J].,2024,32(7):203-210.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-02-09
  • 最后修改日期:2024-04-27
  • 錄用日期:2024-04-22
  • 在線(xiàn)發(fā)布日期: 2024-08-02
  • 出版日期:
文章二維碼
清徐县| 咸阳市| 金寨县| 彰武县| 焉耆| 新龙县| 微博| 白山市| 丰都县| 新化县| 上思县| 芜湖市| 永清县| 昭苏县| 青田县| 龙山县| 宜兰县| 宜春市| 商河县| 万山特区| 海城市| 津南区| 绥江县| 信宜市| 永济市| 通海县| 宿松县| 泽普县| 涡阳县| 特克斯县| 高安市| 望谟县| 南投市| 江城| 清苑县| 突泉县| 临夏县| 茂名市| 南华县| 皮山县| 醴陵市|