国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于混合天鷹優(yōu)化器的風(fēng)力發(fā)電預測
DOI:
CSTR:
作者:
作者單位:

青島科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(61973180;62172249)


Wind Power Forecasting Based on Mixed Aquila Optimizer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決天鷹優(yōu)化器(AO,Aquila Optimization)集中在全局搜索導致的局部尋優(yōu)能力略差、依賴(lài)初始種群質(zhì)量和易陷入局部最優(yōu)的問(wèn)題,提出一種多策略混合的天鷹優(yōu)化器(MAO,Mixed Aquila Optimizer);該算法利用改進(jìn)的Hooke-jeeves優(yōu)化基本天鷹優(yōu)化器的初始化種群質(zhì)量;引入模擬退火概率對易陷入局部最優(yōu)解進(jìn)行改進(jìn);自適應權重提高前期全局搜索效率,延緩后期局部搜索速度,避免在正解附近徘徊;選取12個(gè)基準測試函數進(jìn)行實(shí)驗,并將MAO應用于風(fēng)力發(fā)電預測模型優(yōu)化;實(shí)驗結果表明,對于單峰函數、多峰函數和固定維函數,MAO比AO等對比函數具有更快的收斂速度和更高的精度;在春夏秋冬數據集上進(jìn)行仿真實(shí)驗,對比其他模型1月和10月預測精度提高了15%,4月和8月的預測曲線(xiàn)更加平滑;證實(shí)了MAO對于提高風(fēng)電預測的精度和速度的可行性和實(shí)用性。

    Abstract:

    In order to solve the problem that the aquila optimizer algorithm concentrates on global search resulting in slightly poor local optimization ability, relies on the quality of the initial population and is prone to fall into local optimum, a multi-strategy mixed aquila optimizer is proposed.The algorithm uses improved Hooke-jeeves to optimize the initialized population quality of the basic aquila optimizer.The introduction of simulated annealing probability improves the easy to fall into the local optimal solution and adaptive weighting improves the efficiency of the global search in the early stage and slows down the local search in the late stage to avoid hovering around the positive solution.Twelve benchmark test functions are selected for experiments and MAO is applied to wind power prediction model optimization.The experimental results show that for single-peak, multi-peak and fixed-dimension functions,MAO has faster convergence speed and higher accuracy than comparative functions such as AO.Simulation experiments on spring, summer, fall and winter datasets,compared with other models,the prediction accuracy in January and October is improved by 15%,and the prediction curves in April and August are smoother.It confirms the feasibility and practicability of MAO for improving the accuracy and speed of wind power prediction.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉香怡,梁宏濤,朱潔.基于混合天鷹優(yōu)化器的風(fēng)力發(fā)電預測計算機測量與控制[J].,2024,32(8):295-303.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-01-22
  • 最后修改日期:2024-02-28
  • 錄用日期:2024-03-01
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
巩留县| 宁陵县| 离岛区| 宁都县| 望城县| 汝南县| 阜宁县| 屏东市| 高陵县| 堆龙德庆县| 张掖市| 公安县| 泗洪县| 老河口市| 中方县| 临洮县| 沅江市| 阿克苏市| 姚安县| 肇州县| 临西县| 女性| 合川市| 历史| 孟州市| 竹北市| 屏东市| 陇川县| 中阳县| 大方县| 子长县| 永康市| 文昌市| 江孜县| 兴义市| 新宁县| 连城县| 哈密市| 若尔盖县| 儋州市| 霍林郭勒市|