国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于自適應特征提取網(wǎng)絡(luò )的復雜環(huán)境下人臉識別
DOI:
CSTR:
作者:
作者單位:

同方知網(wǎng)(北京)技術(shù)有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

知網(wǎng)數據中心云平臺建設項目(KeJ5S2301201)


中圖分類(lèi)號:TP391.41
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現有人臉識別算法在運動(dòng)模糊、低光照等真實(shí)復雜環(huán)境下識別率低、魯棒性較差,導致難以穩定應用在實(shí)際人臉識別任務(wù)的問(wèn)題,提出一種基于自適應特征提取網(wǎng)絡(luò )的復雜環(huán)境下人臉識別方法;該網(wǎng)絡(luò )結合傳統方法的特征提取技術(shù)和深度學(xué)習網(wǎng)絡(luò )特征表示能力,實(shí)現了對不同復雜環(huán)境下人臉?lè )€定識別;設計了一種自適應紋理特征提取算法,通過(guò)自動(dòng)獲取閾值來(lái)實(shí)現特征提取,提高網(wǎng)絡(luò )計算效率;使用逆向傳播算法改進(jìn)深度信念網(wǎng)絡(luò ),并引入共軛梯度算法解決網(wǎng)絡(luò )的梯度消失問(wèn)題,減少其收斂時(shí)間,提高算法魯棒性;經(jīng)實(shí)驗驗證,所提方法在標準LWF數據集和復雜環(huán)境CASIA、MS1M數據集中的準確率分別達到99.72%、89.54%及88.75%,參數量和網(wǎng)絡(luò )計算量分別為2.84M及0.67G,均優(yōu)于對比算法,能夠滿(mǎn)足復雜環(huán)境下人臉識別任務(wù)需求。

    Abstract:

    Aiming at the problem that the existing face recognition algorithms have low recognition rates and poor robustness in real and complex environments such as motion blur and low light, which makes it difficult to be stably applied to actual face recognition tasks, a face recognition method in complex environments based on adaptive feature extraction network is proposed. The network combines the feature extraction technology of traditional methods with the feature representation ability of deep learning network, and realizes the task of stable face recognition in different complex environments. An adaptive texture feature extraction algorithm is designed, which realizes feature extraction by automatically obtaining the threshold value and improves the network computing efficiency. The back propagation algorithm is used to improve the deep belief network, and the conjugate gradient algorithm is introduced to solve the gradient disappearance problem of the network, which reduces its convergence time and improves the algorithm's robustness. The experimental results show that the accuracy of the proposed method reaches 99.72%, 89.54% and 88.75% respectively on the standard LWF dataset and the complex environment CASIA and MS1M datasets. The number of parameters and network calculations are 2.84M and 0.67G respectively, which are superior to the comparison algorithm and can meet the needs of face recognition tasks in complex environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

李達.基于自適應特征提取網(wǎng)絡(luò )的復雜環(huán)境下人臉識別計算機測量與控制[J].,2024,32(8):265-271.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-01-02
  • 最后修改日期:2024-02-13
  • 錄用日期:2024-02-20
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
贡山| 明水县| 乐安县| 吉隆县| 周宁县| 松桃| 锦州市| 项城市| 毕节市| 江口县| 岐山县| 牙克石市| 嘉定区| 开化县| 修文县| 名山县| 若尔盖县| 洞头县| 宜城市| 连州市| 万山特区| 资源县| 玉山县| 平定县| 红原县| 无棣县| 友谊县| 吉林市| 库伦旗| 滕州市| 惠水县| 庄浪县| 牟定县| 沐川县| 天柱县| 临沂市| 新丰县| 保定市| 中山市| 宣武区| 内乡县|