国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于ICEEMDAN和PSO-LSSVM的滾動(dòng)軸承故障診斷方法研究
DOI:
CSTR:
作者:
作者單位:

中海油田服務(wù)股份有限公司油田生產(chǎn)事業(yè)部

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(52206041);中海油田服務(wù)股份有限公司項目(YSB22YF004)。


Research on the Application of ICEEMDAN and PSO-LSSVM Algorithms in Rolling Bearing Fault DiagnosisZheng Lizhao1, Song Hongzhi1, Gu Qilin1,Zhang Baoling1,An Hongxin1,
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對滾動(dòng)軸承疲勞故障振動(dòng)信號具有能量弱、特征稀疏等特點(diǎn),提出了一種通過(guò)改進(jìn)自適應噪聲完備經(jīng)驗模態(tài)分解方法與粒子群優(yōu)化的最小二乘支持向量機結合的故障識別方法。對軸承不同故障信號利用改進(jìn)的自適應噪聲完備經(jīng)驗模態(tài)算法分解為一系列固有模態(tài)函數分量;根據相關(guān)系數-方差貢獻率準則篩選出最能表征原始信號狀態(tài)的分量,并計算重構分量的奇異譜熵值構成特征向量;將提取的特征向量集合輸入到基于粒子群優(yōu)化的最小二乘支持向量機分類(lèi)器中,進(jìn)行模型的訓練和故障模式的識別,與SVM和LSSVM分類(lèi)器模型進(jìn)行準確率和效率比較。試驗結果表明,該方法在滾動(dòng)軸承故障信號中能有效提取故障特征,準確率達98.75%,具有一定可靠性和實(shí)用性。

    Abstract:

    In view of the weak energy and sparse features of fatigue fault vibration signals of rolling bearings, a fault identification method combining improved adaptive noise complete empirical mode decomposition (ICEEMDAN)and particle swarm optimization least-squares support vector machine was proposed (PSO-LSSVM). Different bearing fault signals are decomposed into a series of inherent modal function (IMF) components by an improved adaptive noise complete empirical mode algorithm; The component that can best represent the original signal state is selected according to the correlation core-variance contribution ratio criterion, and the singular spectrum entropy of the reconstructed component is calculated to form the feature vector; The extracted feature vector set is input into the least square support vector machine classifier based on particle swarm optimization, and the model is trained and the fault mode is identified. The accuracy and efficiency of the model are compared with that of SVM and LSSVM classifier。The test results show that the method can effectively extract fault characteristics from rolling bearing fault signals with an accuracy of 98.75%, which has certain reliability and practicability.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭立朝,宋宏志,顧啟林,章寶玲,安宏鑫,張瀚陽(yáng),別鋒鋒.基于ICEEMDAN和PSO-LSSVM的滾動(dòng)軸承故障診斷方法研究計算機測量與控制[J].,2024,32(8):129-137.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-12-04
  • 最后修改日期:2023-12-20
  • 錄用日期:2024-01-02
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
墨竹工卡县| 康马县| 阜新市| 方正县| 增城市| 易门县| 灵石县| 托克托县| 乳山市| 衡阳市| 闵行区| 屯留县| 修文县| 涡阳县| 光泽县| 故城县| 永昌县| 井研县| 佛教| 阿鲁科尔沁旗| 花莲县| 伊金霍洛旗| 龙南县| 收藏| 江川县| 大悟县| 永丰县| 罗平县| 新和县| 南澳县| 卢龙县| 芦溪县| 布拖县| 涡阳县| 如皋市| 霍山县| 高安市| 和硕县| 安化县| 沙河市| 海伦市|