国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于強化學(xué)習算法的神經(jīng)網(wǎng)絡(luò )模糊測試技術(shù)優(yōu)化研究
DOI:
CSTR:
作者:
作者單位:

華北計算技術(shù)研究所,北京 10083

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391? ??????

基金項目:


Research of Neural Network Fuzz Testing Method Based on Reinforcement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    現有神經(jīng)網(wǎng)絡(luò )模糊測試技術(shù)在測試樣本生成階段通常對初始樣本進(jìn)行隨機變異,導致生成樣本質(zhì)量不高,從而測試覆蓋率不高。針對以上問(wèn)題,提出一種基于強化學(xué)習算法的神經(jīng)網(wǎng)絡(luò )模糊測試技術(shù),將模糊測試過(guò)程建模為馬爾可夫決策過(guò)程,在該模型中,測試樣本被看作環(huán)境狀態(tài),不同的變異方法被看作可供選擇的動(dòng)作空間,神經(jīng)元覆蓋率被看作獎勵反饋,使用強化學(xué)習算法來(lái)學(xué)習最優(yōu)的變異策略,指導生成最優(yōu)測試樣本,使其能夠獲得最高的神經(jīng)元覆蓋率。通過(guò)與現有的主流神經(jīng)網(wǎng)絡(luò )模糊測試方法的對比實(shí)驗表明,基于強化學(xué)習算法的神經(jīng)網(wǎng)絡(luò )模糊測試技術(shù),可以提升在不同粒度下的神經(jīng)元覆蓋。

    Abstract:

    The existing neural network fuzz testing techniques typically apply random mutations to initial samples during the test sample generation phase, resulting in low-quality generated samples and, consequently, low test coverage. To address these issues, we propose a neural network fuzz testing technique based on reinforcement learning algorithms. In this approach, we model the fuzz testing process as a Markov decision process. In this model, test samples are regarded as environmental states, and different mutation methods form a set of available actions, neuron coverage serves as a reward feedback Reinforcement learning algorithms are used to learn the optimal mutation strategy, guiding the generation of optimal test samples to achieve highest neuron coverage. Comparative experiments with mainstream neural network fuzz testing methods demonstrate that the neural network fuzz testing technique based on reinforcement learning algorithms can enhance neuron coverage at different granularities.

    參考文獻
    相似文獻
    引證文獻
引用本文

張宇豪,關(guān)昕.基于強化學(xué)習算法的神經(jīng)網(wǎng)絡(luò )模糊測試技術(shù)優(yōu)化研究計算機測量與控制[J].,2024,32(3):131-137.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-11-07
  • 最后修改日期:2023-12-07
  • 錄用日期:2023-12-11
  • 在線(xiàn)發(fā)布日期: 2024-04-01
  • 出版日期:
文章二維碼
顺昌县| 清新县| 桦甸市| 兴海县| 兴业县| 安达市| 乐都县| 盱眙县| 土默特右旗| 聂荣县| 阿拉善盟| 射阳县| 肇源县| 乐昌市| 襄樊市| 阿荣旗| 迭部县| 九龙坡区| 南通市| 湖口县| 蓬安县| 土默特左旗| 株洲县| 汉川市| 克山县| 肇州县| 景泰县| 珠海市| 芜湖市| 澄江县| 抚顺县| 杭州市| 嘉鱼县| 武定县| 克什克腾旗| 佛冈县| 清远市| 龙海市| 博白县| 康乐县| 包头市|