国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)的MFCC與CNN心音信號識別方法的研究
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江西省教育廳(GJJ21084)


Recognition and classification of heart sound signals based on LMFP and CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    心音分類(lèi)在心血管疾病的早期檢測中起著(zhù)至關(guān)重要的作用,特別是對小型初級衛生保健診所、缺少專(zhuān)業(yè)人員陪護的家庭等檢測。為提高心音信號數據類(lèi)別間的可辨別性,進(jìn)一步提高分類(lèi)精度,提出了一種基于多預處理法(LMFP)和卷積神經(jīng)網(wǎng)絡(luò )(CNN)模型的分類(lèi)方法。首先,原始數據的采集頻率為44100Hz,所處理數據量比較大,需要對數據下采樣處理,以減少不必要的數據量。第二,分別采用帶通濾波器、SG濾波器與MFCC預處理,提取心音數據特征,并將一維數據轉換為二維數據或者圖譜,并計算數據PCA變換矩陣。第三,將預處理后的二維數據對應的PCA變換矩陣相乘,這是LMFP的主要部分,可減少不必要的維數,使數據更具代表性。最后,將處理后的數據,輸入到本文的模型CNN中。為了驗證LMFP+CNN算法的有效性和可靠性,利用PASCAL挑戰數據部分數據集進(jìn)行了實(shí)驗。通過(guò)與其他方法、卷積神經(jīng)網(wǎng)絡(luò )不同層數的比較,證明了該方法的優(yōu)越性。實(shí)驗結果表明,本文提出的方法可有效達到97.21%的準確率。

    Abstract:

    Heart sound classification plays a crucial role in the early detection of cardiovascular disease, especially in small primary health care clinics and in homes without a professional presence. In order to improve the discriminability between categories of heart sound signal data and further improve the classification accuracy, a classification method based on multi-preprocessing method (LMFP) and convolutional neural network (CNN) model was proposed. First of all, the acquisition frequency of the original data is 44100Hz, and the amount of data processed is relatively large, so it is necessary to downsample the data to reduce the unnecessary amount of data.? Second, bandpass filter, SG filter and MFCC were used for preprocessing to extract the features of heart sound data, and the one-dimensional data was converted into two-dimensional data or spectrogram, and the data PCA transformation matrix was calculated. Third, multiply the PCA transformation matrix corresponding to the preprocessed two-dimensional data, which is the main part of LMFP. It can reduce unnecessary dimensions and make the data more representative. Finally, the processed data is input into the model CNN of this paper. In order to verify the validity and reliability of LMFP+CNN algorithm, experiments were carried out with partial data set of PASCAL challenge data. Compared with other methods and convolutional neural networks with different layers, the superiority of this method is proved. The experimental results show that the method proposed in this paper can effectively achieve 97.21% accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

王佳佳,熊飛龍.基于改進(jìn)的MFCC與CNN心音信號識別方法的研究計算機測量與控制[J].,2024,32(12):201-207.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-10-26
  • 最后修改日期:2023-12-07
  • 錄用日期:2023-12-11
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
江安县| 电白县| 阳新县| 泰州市| 甘孜县| 霸州市| 阜宁县| 婺源县| 温宿县| 江油市| 宁武县| 巫溪县| 台东市| 四子王旗| 兴城市| 黎川县| 常山县| 平谷区| 江口县| 庆云县| 扎兰屯市| 新泰市| 聂荣县| 仙桃市| 平湖市| 兴安县| 剑阁县| 荣昌县| 辰溪县| 陕西省| 桐庐县| 南丰县| 孙吴县| 屯门区| 柘荣县| 和平区| 黑龙江省| 鹤庆县| 卢湾区| 花莲县| 咸丰县|