国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

注意力殘差塊引導的師生網(wǎng)絡(luò )色織物缺陷檢測算法
DOI:
CSTR:
作者:
作者單位:

西安工程大學(xué) 電子信息學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391??? ??

基金項目:

國家自然科學(xué)基金(61803292);紡織工業(yè)聯(lián)合會(huì )科技指導性項目(2020111);西安工程大學(xué)研究生創(chuàng )新(chx2023011)。


Teacher-student Network Yarn-dyed Fabric Defect Detection Based on Attention Residual Block Guidance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統色織物缺陷檢測重構模型存在難以保證缺陷區域的重構效果、漏檢和誤檢率偏高等問(wèn)題,提出一種注意力殘差塊引導的無(wú)監督師生網(wǎng)絡(luò )色織物缺陷檢測算法。從知識蒸餾角度出發(fā),基于Wide_ Resnet50_2網(wǎng)絡(luò )設計一種具有編碼-解碼結構的教師-學(xué)生模型,學(xué)生網(wǎng)絡(luò )通過(guò)恢復經(jīng)過(guò)預訓練的教師網(wǎng)絡(luò )的多尺度特征增強重構能力。提出一種融合雙重注意力的殘差模塊DARM(Dual Attention Residual Module),對特征信息進(jìn)行雙重權重分配的方式可以去除教師網(wǎng)絡(luò )輸出的冗余信息,進(jìn)一步擴大師生網(wǎng)絡(luò )之間對于缺陷區域的表征差異,提升模型的缺陷檢測與定位能力。實(shí)驗結果表明,提出的算法在YDFID-1數據集上AUPRO達到了85.8%、像素級AUROC和圖像級AUROC分別達到了96.3%和98.3%;在少樣本條件設置下,提出的算法在MVTec數據集上AUPRO和AUROC下降不超過(guò)4.5%,實(shí)驗結果驗證了該算法處理色織物缺陷檢測問(wèn)題的有效性以及穩定性。

    Abstract:

    Aiming at the traditional yarn-dyed fabric defect detection reconstruction model, there are problems such as difficult to ensure the reconstruction effect of the defective region, missed detection and high false detection rate, an unsupervised teacher-student network yarn-dyed fabric defect detection algo-rithm based on attention residual block guidance is proposed. Firstly, from the perspective of knowledge distillation, a teacher-student model with encoding-decoding structure based on Wide_Resnet50_2 network is designed, and the student network enhances the reconstruction capa-bility by recovering the multi-scale features of the pre-trained teacher network. Secondly, a DARM (Dual Attention Residual Module) is proposed to incorporate dual attention, and the dual weight assignment of feature information can remove the redundant information output from the teacher network, further expand the differences in the representation of defective regions between the teach-er-student network, and improve the defect detection and localization ability of the model. The ex-perimental results show that the proposed algorithm achieves 85.8% AUPRO, 96.3% pixel-level AUROC and 98.3% image-level AUROC on the YDFID-1 dataset, and the proposed algorithm de-creases no more than 4.5% AUPRO and AUROC on the MVTec dataset under the setting of fewer samples condition, and the experimental results validate the algorithm's effectiveness and stability in dealing with the experimental results verify the effectiveness as well as the stability of the algorithm to deal with the problem of color fabric defect detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

張玥,劉帥波,張思怡,吳天禧.注意力殘差塊引導的師生網(wǎng)絡(luò )色織物缺陷檢測算法計算機測量與控制[J].,2024,32(5):80-87.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-10-23
  • 最后修改日期:2023-11-22
  • 錄用日期:2023-11-23
  • 在線(xiàn)發(fā)布日期: 2024-05-22
  • 出版日期:
文章二維碼
卓尼县| 康乐县| 定结县| 扎鲁特旗| 文水县| 洛川县| 文登市| 都安| 昌吉市| 芜湖市| 商水县| 莆田市| 应城市| 神农架林区| 剑阁县| 田东县| 宝清县| 鹤山市| 普洱| 蓝山县| 辽阳市| 乐清市| 丰城市| 宾川县| 黄陵县| 水富县| 洛隆县| 北碚区| 建瓯市| 长岭县| 潜江市| 迁西县| 叙永县| 成安县| 大庆市| 庐江县| 七台河市| 绥滨县| 炉霍县| 青田县| 房产|