国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于雙向LSTM神經(jīng)網(wǎng)絡(luò )的站點(diǎn)周邊水位預測系統設計
DOI:
CSTR:
作者:
作者單位:

寧波市軌道交通集團有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of water level prediction system around station based on bidirectional LSTM neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水位記錄數據與原始水位數據之間的差值過(guò)大,是導致站點(diǎn)主機無(wú)法準確預測周邊水系特點(diǎn)的主要原因,為解決上述問(wèn)題,設計基于雙向LSTM神經(jīng)網(wǎng)絡(luò )的站點(diǎn)周邊水位預測系統。站點(diǎn)周邊水位預測系統硬件部分設計了周邊水系查詢(xún)體系與水位記錄裝置;在此基礎上,根據初始參數定義結果,建立LSTM神經(jīng)網(wǎng)絡(luò )布局模型,并完善水位預測系統雙向LSTM解碼器的連接閉環(huán),實(shí)現站點(diǎn)周邊水位預測系統的總體執行方案設計。采集水位數據,并實(shí)施針對性的清洗處理,利用完成清洗后的數據對象,建立一維水動(dòng)力模型,再根據水系糙率計算結果,確定流量與延時(shí)時(shí)間的數值關(guān)系,實(shí)現對站點(diǎn)及其周邊水系特點(diǎn)的分析,結合相關(guān)軟、硬件結構,完成基于雙向LSTM神經(jīng)網(wǎng)絡(luò )的站點(diǎn)周邊水位預測系統的設計。實(shí)驗結果表明,上述系統的應用可以保證水位記錄數據與原始水位數據之間的無(wú)誤差擬合,不會(huì )因為水位數據差值過(guò)大而導致非精準預測水系特點(diǎn)的問(wèn)題。

    Abstract:

    The large difference between the recorded water level data and the original water level data is the main reason why the station host cannot accurately predict the characteristics of the surrounding water system. To solve the above problem, a bidirectional LSTM neural network based station surrounding water level prediction system is designed. The hardware part of the water level prediction system around the station is designed with a peripheral water system query system and water level recording device; On this basis, based on the initial parameter definition results, an LSTM neural network layout model is established, and the connection loop of the bidirectional LSTM decoder in the water level prediction system is improved to achieve the overall execution plan design of the water level prediction system around the station. Collect water level data and implement targeted cleaning treatment. Using the cleaned data object, establish a one-dimensional hydrodynamic model. Then, based on the calculation results of water system roughness, determine the numerical relationship between flow rate and delay time, and analyze the characteristics of the station and its surrounding water system. Combined with relevant software and hardware structures, complete the design of a bidirectional LSTM neural network based station surrounding water level prediction system. The experimental results indicate that the application of the above system can ensure error free fitting between the water level recorded data and the original water level data, and will not lead to inaccurate prediction of water system characteristics due to the large difference in water level data.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚曄,許錫偉,管劍波,葛旭初.基于雙向LSTM神經(jīng)網(wǎng)絡(luò )的站點(diǎn)周邊水位預測系統設計計算機測量與控制[J].,2024,32(11):18-24.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-10-10
  • 最后修改日期:2023-11-27
  • 錄用日期:2023-11-27
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
涟源市| 邮箱| 甘泉县| 绥德县| 安溪县| 绥江县| 葵青区| 肥西县| 夹江县| 合山市| 巩义市| 洛宁县| 葵青区| 太康县| 江油市| 汉川市| 廊坊市| 青田县| 电白县| 宜城市| 含山县| 青冈县| 徐水县| 威信县| 鄂托克前旗| 安泽县| 习水县| 梁山县| 繁峙县| 宜宾市| 封开县| 上蔡县| 郸城县| 韶山市| 新野县| 唐河县| 三门峡市| 怀来县| 响水县| 宁陵县| 禹城市|