国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于物聯(lián)網(wǎng)和GCNN-LSTM的河流水文預測方法
DOI:
CSTR:
作者:
作者單位:

鄭州大學(xué) 河南省超算中心

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

河南省高等學(xué)校重點(diǎn)科研項目(22B520020)


River Hydrological Prediction Method Based on GCNN- LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對河流水文存在預測精度不高的問(wèn)題,利用物聯(lián)網(wǎng)技術(shù)設計了分布式的降雨和水文信息自動(dòng)采集系統,并提出了一種基于圖卷積神經(jīng)網(wǎng)絡(luò )和長(cháng)短期記憶網(wǎng)絡(luò )模型對河流水位和徑流量進(jìn)行預測的方法。首先通過(guò)分析確定了影響河流水文的主要因素,將流域范圍內的降雨量信息組成網(wǎng)格化的二維圖形矩陣。然后提出了GCNN-LSTM預測模型,將含有降雨信息的二維圖形矩陣作為網(wǎng)絡(luò )模型的輸入,獲取該流域內降雨與水文變化的時(shí)空分布特征。最后采用所提出的GCNN-LSTM預測模型對河南省周口市段潁河的歷史水文數據進(jìn)行訓練,再利用訓練后的網(wǎng)絡(luò )對測試集數據進(jìn)行預測,得到了較高精度的徑流量和水位結果,徑流量預測結果的RMSE、MAPE和MAE分別僅為17.09m3/s、1.68%和8.57m3/s,水位預測結果的RMSE、MAPE和MAE分別僅為0.32m、0.65%和0.29m,與其他幾種預測方法相比表現出了優(yōu)越性,對科學(xué)合理利用水資源和防洪減災具有重要意義。

    Abstract:

    Aiming at the problem of low prediction accuracy in river hydrology, a distributed automatic collection system for rainfall and hydrological information was designed using Internet of Things technology. A method for predicting river water level and runoff based on graph convolutional neural networks and Long Short-Term Memory (GCNN-LSTM) network models was proposed. Firstly, the main factors affecting river hydrology were identified through analysis, and the rainfall information within the watershed was composed into a grid based two-dimensional graphical matrix. Then, a GCNN-LSTM prediction model was proposed, using a two-dimensional graphical matrix containing rainfall information as input to the network model to obtain the spatiotemporal distribution characteristics of rainfall and hydrological changes in the watershed. Finally, the proposed GCNN-LSTM prediction model is used to train the historical hydrological data of the Yinghe River in Zhoukou City, Henan Province, then the trained network is utilized to predict the test set dataand and get a high-precision results of runoff and water level, and the RMSE, MAPE, and MAE of the runoff prediction results are only 17.09m3/s, 1.68%, and 8.57m3/s, respectively, while the RMSE, MAPE, and MAE of the water level prediction results were only 0.32m, 0.65%, and 0.29m, respectively, compared with other prediction methods, which demonstrates superiority and has a great significance for the scientific and rational utilization of water resources and flood control and disaster reduction.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉麗娜,羅清元,方強.基于物聯(lián)網(wǎng)和GCNN-LSTM的河流水文預測方法計算機測量與控制[J].,2024,32(7):288-293.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-09-27
  • 最后修改日期:2023-11-07
  • 錄用日期:2023-11-08
  • 在線(xiàn)發(fā)布日期: 2024-08-02
  • 出版日期:
文章二維碼
千阳县| 蒲城县| 宁海县| 松原市| 南城县| 芦山县| 陆河县| 庄浪县| 土默特右旗| 桦甸市| 清镇市| 肥乡县| 垫江县| 宣威市| 大化| 安吉县| 贵南县| 遵化市| 镇沅| 白河县| 新宾| 白玉县| 周口市| 邳州市| 宜宾市| 乌兰浩特市| 海淀区| 双鸭山市| 红安县| 图木舒克市| 宁安市| 灵宝市| 武夷山市| 耒阳市| 湾仔区| 门源| 徐水县| 石柱| 凯里市| 丘北县| 红桥区|