国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5s的跌倒行為檢測
DOI:
CSTR:
作者:
作者單位:

1.南京工程學(xué)院 能源與動(dòng)力工程學(xué)院;2.南京工程學(xué)院 電力工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.41

基金項目:

江蘇省產(chǎn)學(xué)研合作項目(BY2019013)


Fall Behavior Detection based on Improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實(shí)現電廠(chǎng)人員跌倒行為的實(shí)時(shí)檢測,防止跌倒昏迷而無(wú)法及時(shí)發(fā)現并救援的事件發(fā)生,針對跌倒行為檢測實(shí)時(shí)性以及特征提取能力不足的問(wèn)題,提出了一種改進(jìn)YOLOv5s的跌倒行為檢測算法網(wǎng)絡(luò ):在YOLOv5s模型中引入SKAttention注意力模塊,使得網(wǎng)絡(luò )可以自動(dòng)地利用對分類(lèi)有效的感受野捕捉到的信息,這種新的深層結構允許CNN在卷積核心上執行動(dòng)態(tài)選擇機制,從而自適應地調整其感受野的大小;同時(shí)結合ASFF自適應空間融合,并在其中充分利用不同特征,又在算法中引入權重參數,以多層次功能為基礎,實(shí)現了水下目標識別精度提升的目標;加入空間金字塔池化結構SPPFCSPC,大大縮短了推理時(shí)間。實(shí)驗結果表明,相比于原始YOLOv5s,新網(wǎng)絡(luò )在mAP平均精度均值方面提升了2.1%,查全率提升了16%。改進(jìn)后的網(wǎng)絡(luò )在感知細節和空間建模方面更加強大,能夠更準確地捕捉到人員跌倒的異常行為,檢測效果有了顯著(zhù)提升。

    Abstract:

    In order to achieve real-time detection of fall behavior among power plant personnel and prevent the occurrence of events that cannot be detected and rescued in a timely manner due to falls and coma, an improved YOLOv5s fall behavior detection algorithm network is proposed to address the issues of insufficient real-time detection and feature extraction capabilities. The introduction of SKAttention module in the YOLOv5s model enables the network to automatically utilize the information captured by effective receptive fields for classification.This new deep structure allows CNN to perform dynamic selection mechanisms on the convolutional core, thereby adaptively adjusting the size of its receptive field; By combining ASFF adaptive spatial fusion and fully utilizing different features, and introducing weight parameters into the algorithm, based on multi-level functions, the goal of improving the accuracy of underwater target recognition is achieved;The addition of spatial pyramid pooling structure SPPFCSPC greatly reduces inference time. The experimental results show that compared to the original YOLOv5s, the new network has improved the average accuracy of mAP by 2.1% and the recall rate by 16%. The improved network is more powerful in perception of details and spatial modeling, and can more accurately capture abnormal behaviors of people falling, significantly improving the detection effect.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱正林,錢(qián)予陽(yáng),馬辰宇,王悅煒,史騰.基于改進(jìn)YOLOv5s的跌倒行為檢測計算機測量與控制[J].,2024,32(10):26-31.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-09-06
  • 最后修改日期:2023-10-18
  • 錄用日期:2023-10-20
  • 在線(xiàn)發(fā)布日期: 2024-10-30
  • 出版日期:
文章二維碼
石楼县| 建德市| 永兴县| 板桥市| 临沭县| 南召县| 台山市| 沁阳市| 眉山市| 中超| 许昌县| 南江县| 大渡口区| 台中县| 渝北区| 宁阳县| 双鸭山市| 东山县| 巴林右旗| 丰原市| 江口县| 报价| 菏泽市| 东城区| 东港市| 工布江达县| 贵阳市| 和平县| 桂平市| 马尔康县| 抚远县| 甘泉县| 宁河县| 柳河县| 太白县| 武城县| 岚皋县| 禹州市| 巩留县| 江陵县| 托克逊县|