国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5s的輸電通道下的煙霧識別
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.41

基金項目:

江蘇省政策引導類(lèi)計劃項目(SZ-SQ2020007)


Smoke Detection based on Improved YOLOv5s under Transmission Channel
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對輸電通道下出現火災險情而難以及時(shí)發(fā)現的問(wèn)題,能夠在火災初期發(fā)現形狀不規則且稀薄的煙霧的產(chǎn)生,對于險情的控制具有重要作用。為解決此問(wèn)題,提出了改進(jìn)YOLOv5s網(wǎng)絡(luò )的煙霧識別算法。該方法通過(guò)在YOLOv5s模型中引入卷積注意力模塊(CBAM),提高了對外輪廓并不明顯的煙霧的特征提取能力;同時(shí)引入CARAFE特征上采樣算法,擴大感知域,利用到圖片中的其他信息幫助捕捉煙霧的深層特征;為捕捉到圖像中目標較小的煙霧形態(tài),利用FReLU替換原有激活函數SiLU,用二維漏斗激活函數,在引入少量計算和過(guò)擬合風(fēng)險的情況下來(lái)對網(wǎng)絡(luò )空間中的不敏感信息進(jìn)行激活,進(jìn)而改善視覺(jué)任務(wù)。實(shí)驗結果表明,該項目改進(jìn)后的檢測效果相對于原始YOLOv5s網(wǎng)絡(luò )中的查準率提高了6.8%,查全率提高了2.8%,平均精度均值提高了2.3%,檢測精度提升較為明顯,更有利于應用于實(shí)際情況下的煙霧檢測。

    Abstract:

    In response to the challenge of detecting fire hazards in power transmission corridors in a timely manner, especially in the early stages of a fire when irregular and thin smoke is difficult to detect, an improved smoke recognition algorithm for YOLOv5s network is proposed. This method enhances the capability to extract features of smoke with less distinct outlines by introducing a Convolutional Block Attention Module (CBAM) into the YOLOv5s model. Additionally, it incorporates the CARAFE feature upsampling algorithm to expand the perception field and leverage other image information for capturing deep smoke features. To better detect smaller smoke patterns in the images, the SiLU activation function is replaced with FReLU, a two-dimensional funnel-shaped activation function. This modification activates insensitive information in the network space while introducing minimal computational overhead and overfitting risks, thereby enhancing visual task performance. Experimental results demonstrate that the improved algorithm in this project exhibits a 6.8% increase in precision, a 2.8% increase in recall, and a 2.3% improvement in mean Average Precision relative to the original YOLOv5s network. This significant enhancement in detection accuracy makes it more suitable for practical smoke detection applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉昶,孟琳,高陽(yáng),黃國恒,吳繼薇.基于改進(jìn)YOLOv5s的輸電通道下的煙霧識別計算機測量與控制[J].,2024,32(12):172-177.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-09-03
  • 最后修改日期:2023-10-17
  • 錄用日期:2023-10-17
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
两当县| 通州市| 永嘉县| 大石桥市| 连山| 益阳市| 密云县| 类乌齐县| 特克斯县| 汤原县| 清徐县| 呼和浩特市| 庆元县| 苗栗县| 赤壁市| 乐昌市| 鸡西市| 水城县| 商南县| 怀来县| 万载县| 治多县| 红桥区| 绍兴市| 丹阳市| 玛曲县| 揭东县| 衡东县| 乌海市| 无为县| 静海县| 乳山市| 苏州市| 广昌县| 漾濞| 新余市| 淄博市| 枣强县| 枣阳市| 吉木萨尔县| 正阳县|