国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

車(chē)載探地雷達技術(shù)在地鐵隧道檢測中的應用
DOI:
CSTR:
作者:
作者單位:

1.中車(chē)南京浦鎮車(chē)輛有限公司;2.成都唐源電氣股份有限公司;3.、成都唐源電氣股份有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

U25

基金項目:


Application of Vehicular Ground Penetrating Radar Technology in Subway Tunnel DetectionCao Zhi1, 4,Gao Hongqing1,Wang Wei2,Liu Huayun3*
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    車(chē)載探地雷達技術(shù)在地鐵隧道中的檢測得到廣泛應用,對保障地鐵隧道的安全性和可靠性起到重要的作用。為了對地鐵隧道缺陷進(jìn)行精確檢測,并提升檢測的效率,構建基于Yolov5模型的車(chē)載探地雷達檢測系統。首先采用零時(shí)校正、去直流、背景去除和圖像增益方法對信號和圖像進(jìn)行去噪。然后基于Yolov5目標檢測模型,引入SPP-Bottleneck模塊進(jìn)行改進(jìn),最后構建基于Yolov5模型的車(chē)載探地雷達檢測系統。結果顯示,改進(jìn)后的Yolov5模型在置信度相同的條件下,相較于原始模型具有更高的F1值。在實(shí)例應用中,基于Yolov5模型的車(chē)載探地雷達檢測系統F1、精確度、召回率平均值分別為0.884、0.873和0.895,該模型對于隧道中的缺陷檢測具有有效性。Yolov5目標檢測模型的檢測時(shí)間為0.3s,相較于其他三種檢測模型,效率分別提升了93.75%、84.2%和50.0%,更具有實(shí)際應用價(jià)值。此次研究解決了傳統車(chē)載探地雷達技術(shù)存在的問(wèn)題,對地鐵的運營(yíng)和維護具有重要的意義。

    Abstract:

    Vehicle mounted ground penetrating radar technology has been widely applied in the detection of subway tunnels, playing an important role in ensuring the safety and reliability of subway tunnels. In order to accurately detect the subway tunnel defects and improve the detection efficiency, the on-mounted radar detection system based on Yolov5 model is constructed. Signals and images were first denoised using zero time correction, deDC, background removal and image gain methods. Adopting the Yolov5 object detection model and introducing the SPP-Bottleneck module for improvement, a vehicle mounted ground penetrating radar detection system based on the Yolov5 model is constructed. The results show that the improved Yolov5 model has a higher F1 value compared to the original model under the same confidence level. In practical applications, the F1, accuracy, and recall average values of the vehicle mounted ground penetrating radar detection system based on the Yolov5 model are 0.884, 0.873, and 0.895, respectively. This model is effective for defect detection in tunnels. The Yolov5 object detection model has a detection time of 0.3 seconds, and its efficiency has been improved by 93.75%, 84.2%, and 50.0% compared to the other three detection models, which has more practical application value. This study has solved the problems existing in traditional vehicle mounted ground penetrating radar technology and is of great significance for the operation and maintenance of subways.

    參考文獻
    相似文獻
    引證文獻
引用本文

曹志,高洪清,王威,劉華云.車(chē)載探地雷達技術(shù)在地鐵隧道檢測中的應用計算機測量與控制[J].,2024,32(4):61-66.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-30
  • 最后修改日期:2023-09-14
  • 錄用日期:2023-09-19
  • 在線(xiàn)發(fā)布日期: 2024-04-29
  • 出版日期:
文章二維碼
潢川县| 泉州市| 二连浩特市| 鄂伦春自治旗| 衢州市| 五莲县| 双江| 绍兴县| 璧山县| 南充市| 昌图县| 宁河县| 江达县| 河源市| 湘阴县| 胶南市| 平昌县| 那曲县| 历史| 介休市| 海丰县| 汨罗市| 泗水县| 宁德市| 九龙坡区| 原平市| 平南县| 淄博市| 遵义县| 嘉峪关市| 屯留县| 德惠市| 美姑县| 花莲县| 青州市| 西华县| 凭祥市| 沂水县| 玉溪市| 沽源县| 镶黄旗|