国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于注意力機制的TCN-BiLSTM船舶軌跡預測
DOI:
CSTR:
作者:
作者單位:

中國電子科技集團公司第五十四研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(U19B2028);第六屆中國科學(xué)青年人才托舉工程項目(2020QNRC001)


Ship Trajectory Prediction of TCN-Bi-LSTM Based on Attention Mechanism

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現有船舶軌跡預測模型預測準確度低的問(wèn)題,提出一種基于注意力機制的時(shí)域卷積網(wǎng)絡(luò )和雙向長(cháng)短時(shí)記憶網(wǎng)絡(luò )(TCN-ABiLSTM)的船舶軌跡預測模型。首先搭建TCN網(wǎng)絡(luò )提取船舶軌跡的序列特征,之后將注意力機制引入網(wǎng)絡(luò )調整不同屬性特征的權值,凸出對軌跡預測影響更大的特征,最后搭建Bi-LSTM網(wǎng)絡(luò )學(xué)習軌跡序列的前后狀況來(lái)提取序列中更多的信息,實(shí)現對船舶未來(lái)軌跡的預測;通過(guò)實(shí)際船舶AIS數據對網(wǎng)絡(luò )進(jìn)行訓練與測試實(shí)驗,實(shí)驗結果表明,TCN-ABiLSTM模型相比LSTM、Bi-LSTM、TCN、BiLSTM-Attention、TCN-Attention模型船舶軌跡預測精度更高,擬合程度更好,驗證了所設計的TCN-ABiLSTM模型在船舶軌跡預測方面的的有效性和實(shí)用性。

    Abstract:

    A ship trajectory prediction model based on attention mechanism time-domain convolutional network and bidirectional long short memory network (TCN-ABiLSTM) is proposed to address the issue of low prediction accuracy in existing ship trajectory prediction models. Firstly, TCN network is constructed to extract the sequence features of ship trajectories. Then, attention mechanism is introduced into the network to adjust the weights of different attribute features, highlighting the features that have a greater impact on trajectory prediction. Finally, Bi-LSTM network is constructed to learn the pre and post situation of trajectory sequences to extract more information from the sequences, achieving prediction of future ship trajectories; Training and testing experiments are conducted on the network using actual ship AIS data. The experimental results show that the TCN-ABiLSTM model has higher accuracy and better fit in predicting ship trajectories compared to LSTM, Bi LSTM, TCN, BiLSTM Attention, and TCN-Attention models. This verifies the effectiveness and practicality of the designed TCN-ABiLSTM model in predicting ship trajectories.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭逸婕,張君毅,王鵬.基于注意力機制的TCN-BiLSTM船舶軌跡預測計算機測量與控制[J].,2024,32(1):30-36.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-30
  • 最后修改日期:2023-09-28
  • 錄用日期:2023-10-07
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
西昌市| 香河县| 莎车县| 洪雅县| 巴塘县| 建昌县| 临沭县| 嘉黎县| 彰化市| 都兰县| 大庆市| 融水| 临城县| 大方县| 嘉黎县| 安溪县| 普兰店市| 汕尾市| 金昌市| 日土县| 迭部县| 嘉兴市| 缙云县| 宜阳县| 镇巴县| 台南县| 东乡族自治县| 手游| 红河县| 仁寿县| 房山区| 沁水县| 滦平县| 乾安县| 三河市| 黔南| 保定市| 电白县| 龙南县| 奉化市| 武乡县|