国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

通風(fēng)機械儀表盤(pán)在復雜背景環(huán)境中視覺(jué)故障檢測與定位研究
DOI:
CSTR:
作者:
作者單位:

安徽省煤炭科學(xué)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

安徽省高校科研院所省級課題:(S202204s03020015)


Research on Visual Fault Detection and Location of Ventilation Machinery Instrument Panel in Complex Background Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通風(fēng)機械儀表盤(pán)往往處于復雜的背景環(huán)境中,陰影或部分遮擋會(huì )在圖像中引入不一致的顏色、亮度和紋理變化,使得故障區域與周?chē)h(huán)境的對比度下降,導致人工方法難以正確定位故障區域。針對這些問(wèn)題,設計一種通風(fēng)機械儀表盤(pán)視覺(jué)故障檢測與定位方法。首先,使用Kinect相機提取通風(fēng)機械儀表圖像,并進(jìn)行直方圖均衡化來(lái)調節圖像的亮度和色調,增強故障輪廓與背景的局部對比度。然后,利用改進(jìn)像素相關(guān)性分割算法分割圖像特征,將圖像中的儀表盤(pán)區域從復雜背景中提取出來(lái)。利用深度學(xué)習領(lǐng)域的深度卷積網(wǎng)絡(luò ),對分割后的儀表盤(pán)圖像進(jìn)行故障輪廓檢測。最后,計算定位目標(故障輪廓)的質(zhì)心坐標,將質(zhì)心位置作為目標點(diǎn),映射到構建的投影成像空間坐標系中實(shí)現對儀表盤(pán)顯示故障區域的高精度定位。實(shí)驗結果顯示:應用該方法后,故障區域與周?chē)h(huán)境的對比度區分顯著(zhù)增強,具有較高的檢測和定位精度。

    Abstract:

    Ventilation mechanical instrument panels are often in complex background environments, where shadows or partial occlusion can introduce inconsistent color, brightness, and texture changes in the image, resulting in a decrease in the contrast between the faulty area and the surrounding environment, making it difficult for traditional methods to accurately locate the faulty area. To address these issues, a visual fault detection and localization method for ventilation machinery instrument panel is designed. First, use Kinect camera to extract the image of ventilation machinery instrument, and carry out Histogram equalization to adjust the brightness and hue of the image, so as to improve the discrimination between fault contour and background. Then, an improved pixel correlation segmentation algorithm is used to segment the image, extracting the dashboard area from the complex background. Using deep convolutional networks in the field of deep learning to detect fault contours in segmented instrument panel images. Finally, calculate the centroid coordinates of the positioning target (fault contour), use the centroid position as the target point, and map it to the constructed projection imaging spatial coordinate system to achieve high-precision positioning of the instrument panel fault area. The experimental results show that after applying this method, the contrast distinction between the fault area and the surrounding environment is significantly enhanced, with high detection and positioning accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

周晟剛.通風(fēng)機械儀表盤(pán)在復雜背景環(huán)境中視覺(jué)故障檢測與定位研究計算機測量與控制[J].,2024,32(3):106-111.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-18
  • 最后修改日期:2023-09-05
  • 錄用日期:2023-09-06
  • 在線(xiàn)發(fā)布日期: 2024-04-01
  • 出版日期:
文章二維碼
施甸县| 华坪县| 来宾市| 庄河市| 曲周县| 东兴市| 乾安县| 梅河口市| 静海县| 枣庄市| 桂林市| 苏尼特左旗| 壶关县| 民丰县| 鲁山县| 浏阳市| 南昌市| 博野县| 湘乡市| 东乡族自治县| 麦盖提县| 罗定市| 鞍山市| 宁陕县| 福州市| 辰溪县| 乳源| 疏附县| 监利县| 威宁| 台东县| 南岸区| 兴和县| 宁国市| 宜兴市| 铜陵市| 阜宁县| 即墨市| 朝阳区| 交城县| 望奎县|