国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的煙廠(chǎng)制絲車(chē)間智能巡檢機器人自主導航系統設計
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of Autonomous Navigation System for Intelligent Inspection Robot in Tobacco Factory Silk Workshop Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    煙廠(chǎng)制絲車(chē)間通常存在各種設備、管道等復雜的環(huán)境條件,智能巡檢機器人難以準確辨別和識別這些復雜的場(chǎng)景,導致避障精度下降。為了提高智能巡檢機器人的避障精度,提出了基于深度學(xué)習的煙廠(chǎng)制絲車(chē)間智能巡檢機器人自主導航系統設計。通過(guò)電源模塊的設計為系統提供電能,結合射頻模塊和基帶信號處理模塊的設計,完成巡檢機器人導航系統的硬件設計。在系統的軟件設計中,根據導航路徑標記圖像的角點(diǎn)在視覺(jué)差異、距離和顏色等維度的特性,識別智能巡檢機器人導航路徑標記,通過(guò)計算發(fā)生碰撞的預警距離,得到碰撞概率的估計值,利用深度學(xué)習的卷積神經(jīng)網(wǎng)絡(luò )模型,規劃巡檢機器人避撞路徑,實(shí)現智能巡檢機器人的自主導航。測試結果表明,文中系統可以使巡檢機器人成功繞過(guò)障礙物,將避障精度提高到95.5%,為提高車(chē)間巡檢效率和安全性提供了一種新的解決方案。

    Abstract:

    There are usually complex environmental conditions such as various equipment and pipelines in the tobacco factory"s tobacco production workshop, making it difficult for intelligent inspection robots to accurately identify and recognize these complex scenes, resulting in a decrease in obstacle avoidance accuracy. In order to improve the obstacle avoidance accuracy of the intelligent inspection robot, a deep learning based autonomous navigation system design for the intelligent inspection robot in the tobacco factory"s tobacco production workshop is proposed. Provide power to the system through the design of the power module, and combine the design of the RF module and baseband signal processing module to complete the hardware design of the inspection robot navigation system. In the software design of the system, according to the characteristics of the corners of the navigation path marking image in the dimensions of visual difference, distance and color, the navigation path marking of the intelligent patrol robot is recognized. By calculating the collision warning distance, the estimated value of the collision probability is obtained. Using the Convolutional neural network model of deep learning, the collision avoidance path of the patrol robot is planned to achieve the autonomous navigation of the intelligent patrol robot. The test results show that the system in the article can successfully bypass obstacles for the inspection robot, improving the obstacle avoidance accuracy to 95.5%, providing a new solution for improving the efficiency and safety of workshop inspection.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃海松,韋福興,劉大衛,全志昭,邢予權.基于深度學(xué)習的煙廠(chǎng)制絲車(chē)間智能巡檢機器人自主導航系統設計計算機測量與控制[J].,2024,32(11):161-168.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-10
  • 最后修改日期:2023-09-22
  • 錄用日期:2023-09-22
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
安龙县| 海阳市| 承德县| 平和县| 五峰| 深泽县| 都匀市| 井陉县| 沅陵县| 海林市| 兴业县| 赤壁市| 法库县| 五华县| 三江| 黎城县| 天全县| 大兴区| 凤翔县| 凤山市| 东兴市| 健康| 成都市| 格尔木市| 榆林市| 贵定县| 虎林市| 镇康县| 江油市| 如东县| 汝州市| 衡东县| 汕头市| 河西区| 安福县| 兰西县| 当雄县| 河源市| 山阴县| 霍山县| 蕉岭县|