国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于遷移QCNN的孿生網(wǎng)絡(luò )軸承故障診斷方法
DOI:
CSTR:
作者:
作者單位:

溫州大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

溫州市科研項目(ZF2022003)、工業(yè)控制技術(shù)國家重點(diǎn)實(shí)驗室開(kāi)放課題(No.ICT2022B65)


Twin Network-based Bearing Fault Diagnosis Method with Transfer QCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    軸承故障診斷對于降低旋轉機械的損壞風(fēng)險,進(jìn)一步提高經(jīng)濟效益具有重要意義。深度學(xué)習在軸承故障診斷中應用廣泛,但是深度學(xué)習模型在訓練與測試時(shí)容易受到噪聲的干擾導致性能下降。并且軸承的工況變化頻繁,不同工況下的數據采集困難。對此,提出了一種基于遷移QCNN的孿生網(wǎng)絡(luò )軸承故障診斷方法,先預訓練QCNN獲取具有較強判別性的模型參數,將預訓練的參數遷移到QCNN作為子網(wǎng)絡(luò )的孿生網(wǎng)絡(luò )中,然后正常訓練孿生網(wǎng)絡(luò )獲取模型,最后將測試數據與故障數據組成數據對輸入模型,即可得到測試數據的故障類(lèi)型。該方法將QCNN與孿生網(wǎng)絡(luò )相結合,QCNN中的Quadratic神經(jīng)元具有強大的特征提取能力,孿生網(wǎng)絡(luò )共享權重和相對關(guān)系的訓練方式,使得模型可以緩解噪聲和工況數據不平衡問(wèn)題的影響。實(shí)驗結果顯示,相較與傳統機器學(xué)習模型和QCNN等模型,所提出方法在面對噪聲和工況數據不平衡問(wèn)題表現更好。

    Abstract:

    Bearing fault diagnosis is of great significance for reducing the risk of damage to rotating machinery and further improving economic benefits. Deep learning has been widely used in bearing fault diagnosis, but deep learning models are prone to performance degradation due to noise interference during training and testing. Moreover, the operating conditions of bearings change frequently, making it difficult to collect data under different conditions. To address this issue, this paper proposes a bearing fault diagnosis method based on transfer QCNN (Quadratic Convolutional Neural Network) and Siamese network. The QCNN is first pre-trained to obtain model parameters with strong discriminative power. Then, the pre-trained parameters are transferred to the QCNN used as a sub-network in the Siamese network. The Siamese network is then trained to obtain the model. Finally, the test data and fault data are combined to form data pairs input to the model, and the fault type of the test data can be obtained. This method combines QCNN with Siamese network, where the Quadratic neurons in QCNN have powerful feature extraction capabilities, and the Siamese network is trained with shared weights and relative relationships, which helps alleviate the impact of noise and imbalanced operating condition data. Experimental results show that compared to traditional machine learning models and QCNN, the proposed method performs better in dealing with noise and imbalanced operating condition data.

    參考文獻
    相似文獻
    引證文獻
引用本文

王軍,張維通,閆正兵,朱志亮.基于遷移QCNN的孿生網(wǎng)絡(luò )軸承故障診斷方法計算機測量與控制[J].,2024,32(4):1-7.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-07
  • 最后修改日期:2023-09-12
  • 錄用日期:2023-09-13
  • 在線(xiàn)發(fā)布日期: 2024-04-29
  • 出版日期:
文章二維碼
宜宾县| 库车县| 贺州市| 台南市| 梧州市| 德惠市| 页游| 阳泉市| 汤原县| 诸暨市| 安远县| 乌拉特中旗| 铜陵市| 襄汾县| 霍山县| 金秀| 麻城市| 克拉玛依市| 丽江市| 北流市| 大连市| 鸡东县| 衡水市| 庆安县| 搜索| 阿克| 通山县| 荆门市| 东台市| 民和| 内黄县| 乌拉特中旗| 怀安县| 呼伦贝尔市| 庄浪县| 阳城县| 蛟河市| 安福县| 台北市| 弥勒县| 辽阳县|