国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于Swin Transformer的瀝青路面病害分類(lèi)檢測研究
DOI:
CSTR:
作者:
作者單位:

1.長(cháng)安大學(xué) 信息工程學(xué)院;2.長(cháng)安大學(xué) 運輸工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:


Research on Classification and Detection of Asphalt Pavement Diseases Based on Swin Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統卷積神經(jīng)網(wǎng)絡(luò )模型在瀝青路面病害檢測中識別長(cháng)距離裂縫結構能力不足以及面臨的精度局限問(wèn)題,引入Swin Transformer模型進(jìn)行瀝青路面病害分類(lèi)研究。首先對于路面檢測車(chē)采集到的瀝青路面掃描圖像對比度低的問(wèn)題,使用直方圖均衡技術(shù)處理圖像,增加圖像可視化效果。其次,選取三種經(jīng)典卷積神經(jīng)網(wǎng)絡(luò )模型作為對比模型,并在訓練過(guò)程中采用更換損失函數,調整預訓練模型等手段解決過(guò)擬合問(wèn)題。并選用準確率、查全率、F1- score作為評價(jià)指標。在最終實(shí)驗結果中Swin Transformer識別準確率達到了80.6%,F1-score達到了0.776,不僅在整體分類(lèi)準確率上超越了傳統CNN模型,并且對具有長(cháng)距離特征結構的病害方面具有更高的識別準確率,同時(shí)具有良好的可靠性。

    Abstract:

    Aiming at the insufficient ability of the traditional convolutional neural network model to identify long-distance crack structure and the accuracy limitation in the detection of asphalt pavement disease, the Swin Transformer model was introduced to study the classification of asphalt pavement disease. First of all, for the problem of low contrast of the asphalt pavement scanning image collected by the road inspection vehicle, the histogram equalization technology is used to process the image to increase the image visualization effect. Secondly, three classic convolutional neural network models are selected as comparison models, and methods such as replacing the loss function and adjusting the pre-training model are used to solve the over-fitting problem during the training process. And select accuracy rate, recall rate, F1-score as the evaluation index. In the final experimental results, the recognition accuracy of Swin Transformer reached 80.6%, and the F1-score reached 0.776, which not only surpassed the traditional CNN model in overall classification accuracy, but also had a higher recognition of diseases with long-distance characteristic structures accuracy and good reliability.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭晨,楊玉龍,左琛,楊冰鑫.基于Swin Transformer的瀝青路面病害分類(lèi)檢測研究計算機測量與控制[J].,2024,32(2):114-121.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-04
  • 最后修改日期:2023-08-18
  • 錄用日期:2023-08-21
  • 在線(xiàn)發(fā)布日期: 2024-03-20
  • 出版日期:
文章二維碼
宝丰县| 阜康市| 青州市| 乌兰察布市| 阿城市| 浦江县| 富源县| 讷河市| 鄄城县| 陇南市| 云南省| 澄江县| 民勤县| 环江| 齐河县| 紫阳县| 睢宁县| 秭归县| 沙河市| 宁远县| 丘北县| 平利县| 鄂托克旗| 漳浦县| 连城县| 海伦市| 高淳县| 昆山市| 新民市| 安宁市| 化隆| 措美县| 海门市| 黄浦区| 鄂尔多斯市| 德昌县| 吴旗县| 长兴县| 工布江达县| 兖州市| 呼伦贝尔市|