国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度SSD改進(jìn)模型的傳動(dòng)設備狀態(tài)在線(xiàn)監測研究
DOI:
CSTR:
作者:
作者單位:

南京航空航天大學(xué)自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on On-line Monitoring of Transmission Equipment Status Based on Improved Deep SSD Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現有傳動(dòng)設備在線(xiàn)監測算法存在的檢測精度地、效率差等問(wèn)題,提出一種基于改進(jìn)SSD網(wǎng)絡(luò )模型的在線(xiàn)檢測算法。先對故障集進(jìn)行預處理,通過(guò)濾波調制、共振解調等環(huán)節濾除原始故障集的噪聲干擾;以VGG-16為基礎設計了SSD網(wǎng)絡(luò )結構,同時(shí)增加了輔助卷積層和預測層;對SSD網(wǎng)絡(luò )模型進(jìn)行改進(jìn),引入了注意力機制模塊和特征增強模塊,改善模型各層的數據共享性能同時(shí)提高了模型的數據訓練效率;基于通道拼合方式對故障數據進(jìn)行多尺度特征融合,并優(yōu)化SSD模型的各層金字塔結構,以更好的匹配先驗框及選擇最佳的損失函數。實(shí)驗結果顯示,提出算法的傳動(dòng)設備故障檢測率達到98.8%,同時(shí)算法的檢測效率也優(yōu)于現有算法。

    Abstract:

    Aiming at the problems of accuracy and efficiency of existing on-line monitoring algorithms for transmission equipment, an on-line detection algorithm based on improved SSD network model is proposed. Firstly, the fault set is preprocessed, and the noise interference of the original fault set is filtered by filtering modulation and resonance demodulation. The SSD network structure is designed based on VGG-16, and auxiliary convolution layer and prediction layer are added. To improve the SSD network model, the attention mechanism module and feature enhancement module are introduced to improve the data sharing performance of each layer of the model and improve the data training efficiency of the model. The multi-scale feature fusion of fault data is carried out based on the channel fusion method, and the pyramid structure of each layer of SSD model is optimized to better match the prior frame and select the best loss function. Experimental results show that the transmission equipment fault detection rate of the proposed algorithm is 98.8%, and the detection efficiency of the proposed algorithm is better than the existing algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

王宜忺,周大可.基于深度SSD改進(jìn)模型的傳動(dòng)設備狀態(tài)在線(xiàn)監測研究計算機測量與控制[J].,2024,32(3):99-105.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-01
  • 最后修改日期:2023-08-30
  • 錄用日期:2023-09-01
  • 在線(xiàn)發(fā)布日期: 2024-04-01
  • 出版日期:
文章二維碼
开封市| 托克逊县| 高密市| 宜君县| 中西区| 筠连县| 阿鲁科尔沁旗| 花莲市| 吉首市| 平远县| 辰溪县| 招远市| 茌平县| 无锡市| 同仁县| 西充县| 霍州市| 元谋县| 朝阳市| 巫溪县| 景宁| 佛坪县| 昌吉市| 宕昌县| 榆中县| 唐海县| 云龙县| 河南省| 柯坪县| 彭泽县| 科技| 乌拉特后旗| 甘泉县| 乐安县| 榆林市| 大埔区| 宕昌县| 西宁市| 双城市| 重庆市| 静海县|