国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)的GoogleNet-ResNet算法的路基病害智能分類(lèi)方法
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省軟科學(xué)研究計劃項目(2021KRM029);西安市高校院所人才服務(wù)企業(yè)項目(23GXFW0045)


Intelligent Classification Method for Road Pavement Diseases Based on Improved GoogleNet-ResNet Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對路基病害分類(lèi)算法存在的復雜病害辨識難度大、多視圖雷達圖像特征利用不充分等問(wèn)題,本文提出一種基于改進(jìn)的GoogleNet-ResNet算法的路基病害智能分類(lèi)方法。首先,引入坐標注意力和改進(jìn)的Inception模塊對GoogleNet網(wǎng)絡(luò )結構進(jìn)行優(yōu)化。然后,利用改進(jìn)的GoogleNet學(xué)習c-scan數據特征剔除非目標病害,實(shí)現病害目標的粗分類(lèi)。最后,將分類(lèi)成病害的b-scan數據輸入基于遷移學(xué)習的ResNet50,實(shí)現病害的細分類(lèi)。實(shí)驗表明,改進(jìn)的GoogleNet進(jìn)行病害粗分類(lèi)的準確率可達到98.2%,檢測速度可達90.9FPS。基于遷移學(xué)習的ResNet50進(jìn)行病害細分類(lèi)的準確率可達90.5%,檢測速度可達52.6FPS。本文算法的準確率比單獨的改進(jìn)的GoogleNet網(wǎng)絡(luò )高10.1%,比單獨的ResNet50網(wǎng)絡(luò )高7.4%,有效地提高了道路路基病害的識別精度與效率。

    Abstract:

    In response to the challenges of complex disease identification and the underutilization of multi-view radar image features in the classification algorithm for roadbed diseases, this paper proposes an intelligent classification method for roadbed diseases based on an improved GoogleNet-ResNet algorithm. Firstly, it introduces coordinate attention and improved Inception modules to optimize the GoogleNet network structure. Then, the improved GoogleNet is utilized to learn the c-scan data features, eliminating non-target diseases and achieving a coarse classification of the disease targets. Finally, the b-scan data classified as diseases is input into a ResNet50 model based on transfer learning to achieve the fine classification of the diseases. The results show that the improved GoogleNet achieves an accuracy of 98.2% for coarse disease classification and a detection speed of 90.9 FPS. The accuracy of disease sub-classification using ResNet50 based on transfer learning reaches 90.5%, and the detection speed reaches 52.6 FPS. The proposed algorithm in this paper achieves an accuracy that is 10.1% higher than that of the improved GoogleNet network alone, and 7.4% higher than that of the ResNet50 network alone. This algorithm effectively improves the recognition accuracy and efficiency of roadbed disease detection while reducing the probability of misjudgments.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳登峰,楊小燕,張溫,何拓航,陳俊彤.基于改進(jìn)的GoogleNet-ResNet算法的路基病害智能分類(lèi)方法計算機測量與控制[J].,2024,32(8):250-256.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-11-23
  • 錄用日期:2023-09-04
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
怀远县| 延川县| 乃东县| 衡东县| 鄂尔多斯市| 句容市| 萝北县| 沾益县| 威宁| 芮城县| 湟源县| 嘉定区| 北川| 那曲县| 古蔺县| 奉新县| 大港区| 岑巩县| 临城县| 平遥县| 如东县| 缙云县| 文昌市| 浦北县| 溆浦县| 岳西县| 安阳市| 弥渡县| 涡阳县| 宣威市| 包头市| 班戈县| 灵璧县| 噶尔县| 曲沃县| 东明县| 新蔡县| 沈阳市| 简阳市| 甘孜| 平和县|