国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的車(chē)輛紅外圖像多目標識別方法
DOI:
CSTR:
作者:
作者單位:

1.上海城投城市發(fā)展研究院有限公司;2.西安工程大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP181

基金項目:

國家自然科學(xué)基金(51905405);陜西省自然科學(xué)基礎研究計劃項目(2022JM407)。


Vehicle Infrared Image Multi-target Recognition Based on Improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    城鄉結合部的建設是城市建設中重要的一環(huán),由于難以布設有效的檢測設備,該區域車(chē)輛目標的夜間監管一直是城市管理的難題。基于無(wú)人機平臺紅外夜視圖像多運動(dòng)目標檢測為解決這一難題提供了智能化路徑:一種基于改進(jìn)YOLOv5的紅外夜視條件下多運動(dòng)目標識別方法,分析了交通對象特征、車(chē)輛停放對道路紅外輻射影響等,引入了CBAM注意力機制,以提取和融合空間和通道信息,增強了網(wǎng)絡(luò )對目標的表達能力;綜合Efficient IOU Loss和Focal Loss的優(yōu)點(diǎn),使用EIoU-Focal Loss損失函數替換了CIoU Loss函數,解決了樣本不平衡、紅外圖像的低分辨率、噪聲干擾大以及目標與背景對比度低等弊端,提高了檢測的準確性;通過(guò)加入DCN動(dòng)態(tài)調整卷積核的形狀,適應圖像中目標的形變,降低因形狀不規則、變化較多造成的識別影響。在公開(kāi)數據集上對改進(jìn)網(wǎng)絡(luò )與經(jīng)典網(wǎng)絡(luò )進(jìn)行實(shí)驗和數據比較,結果表明:綜合改進(jìn)后的網(wǎng)絡(luò )對于多目標的識別,在YOLOv5x網(wǎng)絡(luò )較高的識別結果基礎上,精度提升3.9%,召回率提升4.1%,F1增加4.4%。

    Abstract:

    The rural-urban fringe is an important part of urban construction. Due to the difficulty of deploying effective detection equipment, the night supervision of vehicle targets in this area has been a difficult problem for urban management. Multi-moving target detection based on infrared night vision images of UAV platform provides an intelligent path to solve this problem: A multi-moving target recognition method based on improved YOLOv5 under infrared night vision conditions analyzed the characteristics of traffic objects and the impact of vehicle parking on road infrared radiation, etc. CBAM attention mechanism was introduced to extract and integrate spatial and channel information to enhance the expression ability of the network to the target. Combining the advantages of Efficient IOU Loss and Focal Loss, the EIoU-Focal loss function was used to replace CIoU loss function, which solved the disadvantages of sample imbalance, low resolution of infrared image, large noise interference and low contrast between target and background, and improved the detection accuracy. By adding DCN to dynamically adjust the shape of the convolution kernel, it can adapt to the deformation of the object in the image, and reduce the recognition influence caused by irregular shape and many changes. Finally, experiments and data comparisons indicate that the improved network based on YOLOv5 achieves higher recognition results and accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

左濤,周慧龍,原偉哲.基于改進(jìn)YOLOv5的車(chē)輛紅外圖像多目標識別方法計算機測量與控制[J].,2024,32(8):228-235.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-24
  • 最后修改日期:2023-09-04
  • 錄用日期:2023-09-06
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
崇文区| 沐川县| 密云县| 治县。| 庆云县| 大足县| 东兰县| 个旧市| 安丘市| 新绛县| 乌兰察布市| 根河市| 那曲县| 广平县| 延寿县| 桓仁| 望谟县| 宁都县| 南城县| 郑州市| 平阳县| 化州市| 习水县| 朝阳县| 乌拉特后旗| 浮梁县| 嘉兴市| 广河县| 城固县| 隆子县| 广安市| 株洲市| 廊坊市| 敖汉旗| 巨野县| 确山县| 巴东县| 鹤壁市| 加查县| 平顺县| 连平县|