国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)YOLOv7的軋鋼車(chē)間安全帽佩戴檢測算法
DOI:
CSTR:
作者:
作者單位:

山東建筑大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(62003191)


Improved Helmet Wearing Detection Algorithm in Steel Rolling Workshop for YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    佩戴安全帽能夠保護生產(chǎn)工作者頭部免受墜物撞擊帶來(lái)的傷害。軋鋼車(chē)間存在空間跨度大、作業(yè)設備繁多、環(huán)境雜亂、晝夜光照差別大、炫光、監控目標尺度變化范圍大等問(wèn)題,增加了安全帽佩戴檢測難度。針對上述問(wèn)題,設計了基于改進(jìn)YOLOv7模型的軋鋼車(chē)間安全帽佩戴檢測方案;算法基于NWD方法改進(jìn)損失函數以提高目標檢測精度,并在SPPCSPC模塊上增加了BiFormer模塊,使模型對小目標具有更好的檢測精度,同時(shí)不會(huì )增加運算負擔,優(yōu)于其他注意力機制。在自建安全帽數據集上對改進(jìn)的YOLOv7模型進(jìn)行訓練,實(shí)驗表明,改進(jìn)的YOLOv7模型平均精度均值為99.3%,檢測速度達82FPS,與其他主流算法、改進(jìn)算法對比,改進(jìn)YOLOv7的mAP指標最高,大大超過(guò)了其他模型的指標,同時(shí)檢測速度基本與改進(jìn)模型前相差不大,并沒(méi)有因為精度提高而明顯降低檢測速度,有較好效果。

    Abstract:

    Wearing helmets can protect the head of production workers from injuries caused by falling objects. There are problems such as large span of space, many operating equipment, cluttered environment, big difference of day and night light, dazzling light, and large range of scale change of monitoring target in rolling mill, which increase the difficulty of helmet wearing detection. In response to the above problems, a helmet wearing detection scheme based on the improved YOLOv7 model is designed for the steel rolling shop. The algorithm improves the loss function based on the NWD method to improve the target detection accuracy, and adds the BiFormer on the SPPCSPC module to make the model have better detection accuracy for small targets without increasing the computational burden, which is better than other attention mechanisms. The improved YOLOv7 model is trained on the self-constructed helmet dataset, and the experiments show that the improved YOLOv7 model has a mean average accuracy of 99.3%, and the detection speed reaches 82 FPS. comparing with the other mainstream algorithms and the improved algorithms, the improved YOLOv7 has the highest mAP index, which is much more than the index of other models. At the same time, the detection speed is basically not much different from that before the improvement of the model, and does not significantly reduce the detection speed because of the improvement of accuracy, which has a better effect.

    參考文獻
    相似文獻
    引證文獻
引用本文

張欣毅,張運楚,王菲,劉一銘.改進(jìn)YOLOv7的軋鋼車(chē)間安全帽佩戴檢測算法計算機測量與控制[J].,2024,32(7):15-22.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-13
  • 最后修改日期:2023-08-16
  • 錄用日期:2023-08-17
  • 在線(xiàn)發(fā)布日期: 2024-08-02
  • 出版日期:
文章二維碼
双鸭山市| 鹤岗市| 黔江区| 荔波县| 婺源县| 鄢陵县| 扎鲁特旗| 屯留县| 博白县| 刚察县| 崇明县| 黄梅县| 九江市| 汤阴县| 沙坪坝区| 达孜县| 柘城县| 新民市| 收藏| 思茅市| 上杭县| 绥德县| 额尔古纳市| 奉新县| 竹山县| 达日县| 阿图什市| 偏关县| 谢通门县| 鸡泽县| 贞丰县| 梓潼县| 马山县| 碌曲县| 张家川| 青田县| 安顺市| 正安县| 平陆县| 新野县| 吉林市|