国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于貝葉斯網(wǎng)絡(luò )的電力變壓器局部放電故障檢測
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Partial discharge fault detection of power transformer based on bayesian network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統電力變壓器故障檢測方法對電力系統中潛藏的故障問(wèn)題檢測水平不足,準確率較低,無(wú)法及時(shí)準確的發(fā)現異常隱患等問(wèn)題,本文提出了一種基于貝葉斯網(wǎng)絡(luò )的變壓器局部放電故障檢測方法,首先通過(guò)傳感器獲取電力變壓器不同狀態(tài)下運行過(guò)程中的參數數據,對局部放電故障發(fā)生的概率和范圍進(jìn)行合理性評估,提取評估概率數據綜合為樣本數據集,構建貝葉斯網(wǎng)絡(luò )故障樹(shù);根據邏輯規則轉化為貝葉斯網(wǎng)絡(luò ),推演計算故障節點(diǎn)之間的算例關(guān)系,利用貝葉斯原理抽取故障特征指標與異常概率之間的關(guān)聯(lián)關(guān)系,利用模糊描述方法構建故障特征關(guān)聯(lián)函數,計算可得故障特征模糊函數動(dòng)態(tài)變化關(guān)系,實(shí)現對變壓器故障發(fā)生的概率與位置信息的判斷與確定。通過(guò)實(shí)驗結果可以證明,通過(guò)貝葉斯網(wǎng)絡(luò )對電力變壓器局部放電故障檢測的準確率均達到了85%以上,最高可達96%,說(shuō)明該方法具有較高的檢測準確率,能夠有效提高電力變壓器放電故障檢測的有效性。

    Abstract:

    In view of the problems of the traditional power transformer fault detection methods, such as insufficient detection level, low accuracy, and inability to detect abnormal hidden dangers in a timely and accurate manner, this paper proposes a transformer partial discharge fault detection method based on Bayesian network, which first obtains the parameter data of the power transformer in different operating conditions through sensors, Reasonably evaluate the probability and scope of partial discharge fault occurrence, extract and synthesize the evaluation probability data into sample data set, and construct Bayesian network fault tree; Convert the logic rules into Bayesian network, deduce and calculate the example relationship between the fault nodes, extract the correlation between the fault characteristic index and the abnormal probability using Bayesian principle, construct the fault characteristic correlation function using fuzzy description method, calculate the dynamic change relationship of the fault characteristic fuzzy function, and realize the judgment and determination of the probability and location information of the transformer fault. The experimental results can prove that the accuracy of partial discharge fault detection of power transformer through Bayesian network is more than 85%, and the maximum is 96%, which shows that this method has high detection accuracy and can effectively improve the effectiveness of power transformer discharge fault detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

白國政.基于貝葉斯網(wǎng)絡(luò )的電力變壓器局部放電故障檢測計算機測量與控制[J].,2023,31(9):90-94.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-05
  • 最后修改日期:2023-07-28
  • 錄用日期:2023-07-31
  • 在線(xiàn)發(fā)布日期: 2023-09-18
  • 出版日期:
文章二維碼
绥江县| 宜章县| 云南省| 江都市| 巴楚县| 吴江市| 沁水县| 滦平县| 凤城市| 岳普湖县| 曲沃县| 分宜县| 普兰店市| 枣强县| 大同市| 靖边县| 宿松县| 泽普县| 渝北区| 大足县| 柳州市| 民和| 鱼台县| 新田县| 页游| 赞皇县| 阳城县| 广安市| 宁波市| 措美县| 通城县| 巴楚县| 诸城市| 习水县| 隆化县| 绥滨县| 当阳市| 壤塘县| 绥化市| 德钦县| 襄城县|