国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YoloV4的電網(wǎng)變壓器油液滲漏檢測方法
DOI:
CSTR:
作者:
作者單位:

廣東電網(wǎng) 佛山供電局

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

南方電網(wǎng)公司科技項目資助(GDKJXM20220216,030600KK52220012)


Oil Leakage Detection Method for Power Grid Transformers Based on Improved Yolov4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    及時(shí)發(fā)現電網(wǎng)變壓器油液滲漏問(wèn)題對于電網(wǎng)的安全與穩定運行尤為重要;傳統電網(wǎng)變壓器油液滲漏檢測主要依賴(lài)于人工定期巡檢,但人工巡檢無(wú)法實(shí)現全天候監測,具有滯后性;當前主流目標檢測模型應用于電網(wǎng)變壓器油液滲漏檢測時(shí),存在檢測速度較慢、準確率低和魯棒性較差等問(wèn)題,無(wú)法滿(mǎn)足實(shí)際應用;為此提出一種改進(jìn)YoloV4的變壓器油液滲漏檢測方法;首先,通過(guò)引入Mobile-ViT作為模型的骨干結構,利用卷積和Transformer結構有效提取目標的局部和全局信息特征,降低計算量;其次,提出多尺度特征融合層,旨在實(shí)現局部和全局信息的多尺度特征融合,增強上下文語(yǔ)義表達,用以更好地實(shí)現電網(wǎng)變壓器油液滲漏檢測;實(shí)驗結果表明,該方法在電網(wǎng)變壓器油液滲漏數據集上檢測精度達到了95.3%,檢測速度達到了50.6幀/秒;相較于原生YoloV4方法檢測精度提高了2.6%,檢測速度提升了2.6幀/秒;經(jīng)實(shí)際應用,該方法部署在邊緣設備上推理速度也達到了43幀/秒,滿(mǎn)足了實(shí)際工程的需求。

    Abstract:

    It is particularly important for the safe and stable operation of power grid to find the oil leakage problem of power grid transformer in time. Traditional power transformer oil leakage detection mainly depends on manual regular detection, but manual detection cannot achieve all-weather monitoring and has lag. When the current mainstream object detection model is applied to the oil leakage detection of power grid transformers, there are some problems such as slow detection speed, low accuracy and poor robustness. It cannot meet the practical application. An improved You Only Look Once Version 4 (YoloV4) transformer oil leakage detection method is proposed. Firstly, by introducing Mobile Vision Transformer (Mobile-ViT) as the backbone structure of the model, the local and global information features of the object are effectively extracted by convolution and Transformer structure, which reduces the computation. Secondly, a multi-scale feature fusion layer is proposed, which aims to realize the multi-scale feature fusion of local and global information and enhance the context semantic expression, so as to better realize the oil leakage detection of power grid transformers. The experimental results show that the detection accuracy of this method on the power grid transformer oil leakage data set reaches 95.3%, and the detection speed reaches 50.6 frames per second; Compared with the native YoloV4 method, the detection accuracy is improved by 2.6%, and the detection speed is improved by 2.6 frames per second. After practical application, the reasoning speed of this method deployed on edge devices also reaches 43 frames per second, which meets the needs of practical engineering.

    參考文獻
    相似文獻
    引證文獻
引用本文

陸志欣,田涵寧,郭國偉.基于改進(jìn)YoloV4的電網(wǎng)變壓器油液滲漏檢測方法計算機測量與控制[J].,2024,32(2):85-92.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-28
  • 最后修改日期:2023-07-24
  • 錄用日期:2023-07-25
  • 在線(xiàn)發(fā)布日期: 2024-03-20
  • 出版日期:
文章二維碼
烟台市| 天峨县| 郸城县| 高州市| 凤庆县| 宁南县| 开平市| 南昌县| 虞城县| 平远县| 凉山| 江津市| 临安市| 唐山市| 拉萨市| 虞城县| 天镇县| 会东县| 闸北区| 同德县| 济宁市| 南和县| 丹江口市| 金昌市| 吉水县| 冷水江市| 马龙县| 永州市| 琼海市| 洛阳市| 芜湖市| 旬邑县| 密云县| 南丰县| 元江| 大港区| 蕲春县| 方正县| 井研县| 萍乡市| 彝良县|