国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的病歷質(zhì)量控制系統設計
DOI:
CSTR:
作者:
作者單位:

廣東省梅州市人民醫院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP 273

基金項目:

梅州市人民醫院科研培育項目(PY-C2022006)


Design of a medical record quality control system based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    醫療領(lǐng)域患者的主訴信息是醫療文本分類(lèi)工作的關(guān)鍵,能為智慧醫療和信息文本歸類(lèi)提供有力的支持。近幾年來(lái)隨著(zhù)深度學(xué)習的發(fā)展應用,基于傳統深度學(xué)習技術(shù)的全流程病歷內涵質(zhì)量控制模型層出不窮,但傳統模型存在很多缺點(diǎn)和局限性,諸如訓練速度慢、精度損失、過(guò)擬合和無(wú)法處理大規模數據的問(wèn)題,因此,引入改進(jìn)的深度學(xué)習算法。指南指導下基于深度學(xué)習的全流程病歷內涵質(zhì)量控制體系實(shí)驗結果為,將詞向量設置成160時(shí)雙向循環(huán)神經(jīng)網(wǎng)絡(luò )(Bidirectional Recurrent Neural Network,BiGRU-SA)模型效果最優(yōu),準確率為84.9% 。BiGRU-SA MODEL,精準度受向量維度的影響并不大。而改進(jìn)的文本分類(lèi)式前饋神經(jīng)網(wǎng)絡(luò )(Transformation-extraction-convolutional CNN,TextCNN)模型,精準度在其進(jìn)行第3次和第四次迭代更新時(shí),發(fā)生指數級增長(cháng),并在第3次迭代時(shí),精度達到理想值,為8.3×10-1隨著(zhù)迭代次數的增加,模型準確率呈現先增大后減小的趨勢,在進(jìn)行第6次迭代時(shí)模型效果最優(yōu),準確率為84.9% 。優(yōu)化后的全流程病歷內涵質(zhì)量控制模型在變動(dòng)率指標下的面積的值、準確率、F1、召回率四項指標值都有了一定的提升,以上結果能更好地解決過(guò)擬合和特征信息丟失的問(wèn)題,并且實(shí)現全流程病歷內涵質(zhì)量的控制。

    Abstract:

    The main complaint information of patients in the medical field is the key to medical text classification work, which can provide strong support for smart healthcare and information text classification. In recent years, with the development and application of deep learning, there have been numerous quality control models for the entire process of medical records based on traditional deep learning techniques. However, traditional models have many shortcomings and limitations, such as slow training speed, accuracy loss, overfitting, and inability to handle large-scale data. Therefore, improved deep learning algorithms have been introduced. The experiment result of the whole process medical record connotation quality control system based on in-depth learning under the guidance of the guide is that when the word vector is set to 160, the Bidirectional recurrent neural networks (BiGRU-SA) model has the best effect, with an accuracy rate of 84.9%. The accuracy of BiGRU-SA Model is not significantly affected by the vector dimension. However, the accuracy of the improved transformation extraction evolutionary CNN (TextCNN) model increases exponentially when it is updated in the third and fourth iterations, and reaches the ideal value of 8.3 in the third iteration × 10-1. As the number of iterations increases, the accuracy of the model shows a trend of first increasing and then decreasing. In the sixth iteration, the model performs best with an accuracy of 84.9%. The optimized whole process medical record connotation quality control model has improved the area value, accuracy, F1, and recall rate under the rate of change index. The above results can better solve the problems of overfitting and feature information loss, and achieve the control of the connotation quality of the entire process medical record.

    參考文獻
    相似文獻
    引證文獻
引用本文

羅明.基于深度學(xué)習的病歷質(zhì)量控制系統設計計算機測量與控制[J].,2023,31(11):235-241.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-19
  • 最后修改日期:2023-07-06
  • 錄用日期:2023-07-06
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
乐陵市| 龙游县| 漳平市| 沙洋县| 奉贤区| 镇坪县| 仁怀市| 唐河县| 同德县| 葫芦岛市| 龙泉市| 呼图壁县| 岳池县| 将乐县| 三亚市| 新巴尔虎左旗| 黄浦区| 宜兰市| 天等县| 土默特左旗| 乌拉特后旗| 颍上县| 乐安县| 富平县| 景泰县| 星子县| 双城市| 东港市| 云龙县| 射阳县| 始兴县| 鄂尔多斯市| 襄樊市| 尼玛县| 台北市| 仁布县| 宁蒗| 城口县| 阜城县| 三江| 渭南市|