国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于視覺(jué)圖像與激光點(diǎn)云融合的交通標志快速識別方法
DOI:
CSTR:
作者:
作者單位:

四川信息職業(yè)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

1.重慶市教育委員會(huì )科學(xué)技術(shù)研究項目(NO.KJZD-M202001901) 2.國家級大學(xué)生創(chuàng )新創(chuàng )業(yè)訓練計劃項目(202212608006)


Fast recognition method of traffic signs based on fusion of visual image and laser point cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    交通標志對車(chē)輛交通起到重要作用和意義,而智能交通中交通標志識別由于標志特征提取效果差,導致識別率低、識別時(shí)間長(cháng),因此,提出一種新的基于視覺(jué)圖像與激光點(diǎn)云融合的交通標志快速識別方法。采用雙邊濾波方法預處理原始激光點(diǎn)云數據;通過(guò)歸一化處理得到視覺(jué)圖像激光點(diǎn)云融合的目標空間激光點(diǎn)云位置測距數值。通過(guò)測距值獲取目標圖像位置,歸一化處理交通標志視覺(jué)圖像,引入k均值聚類(lèi)算法(k-means clustering algorithm)二聚類(lèi)處理圖像,采用制作的切割模板切割圖像感興趣區域(ROI),提取交通標志圖像的深度特征,結合卷積神經(jīng)網(wǎng)絡(luò )二次過(guò)濾特征,重新標定二次過(guò)濾后的特征,最終利用卷積神經(jīng)網(wǎng)絡(luò )模型實(shí)現交通標志快速識別。經(jīng)實(shí)驗對比證明,采用所提方法的提取各個(gè)類(lèi)型交通標志特征的提取效果較好,并且識別率達到89.74%,識別時(shí)間僅為13.1s,干擾下識別時(shí)間最高僅為15.1s,驗證了該方法可以快速且準確識別各個(gè)類(lèi)型的交通標志。

    Abstract:

    Traffic signs play an important role and significance in vehicle traffic. However, in intelligent traffic, the recognition rate of traffic signs is low and the recognition time is long due to the poor feature extraction effect. Therefore, a new rapid recognition method of traffic signs based on visual image and laser point cloud fusion is proposed. Two-sided filtering method was used to preprocess the original laser point cloud data. The location ranging values of laser point cloud in target space are obtained by normalized processing. The location of the target image is obtained by the ranging value, the traffic sign visual image is processed in a normalized way, the k-means clustering algorithm is introduced to process the image by diclustering, the ROI of the image is cut by the cutting template made, and the depth features of the traffic sign image are extracted. Combined with the secondary filtering features of convolutional neural network, the features after secondary filtering are re-calibrated, and finally the convolutional neural network model is used to realize the rapid recognition of traffic signs. The experimental comparison shows that the proposed method has a good feature extraction effect for all types of traffic signs, and the recognition rate reaches 89.74%, the recognition time is only 13.1s, and the highest recognition time is only 15.1s under interference, which verifies that this method can quickly and accurately identify all types of traffic signs.

    參考文獻
    相似文獻
    引證文獻
引用本文

王坤,倪娟,陳印.基于視覺(jué)圖像與激光點(diǎn)云融合的交通標志快速識別方法計算機測量與控制[J].,2024,32(1):226-231.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-06
  • 最后修改日期:2023-07-13
  • 錄用日期:2023-07-13
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
南和县| 五常市| 清丰县| 阿瓦提县| 津南区| 临澧县| 任丘市| 通江县| 石屏县| 如东县| 育儿| 花莲市| 星座| 湟中县| 肥西县| 正宁县| 花垣县| 托克逊县| 荆门市| 杂多县| 磐石市| 扬中市| 宁国市| 永新县| 阜宁县| 绥芬河市| 湘潭县| 梁河县| 桦甸市| 大方县| 商城县| 元朗区| 朔州市| 宁阳县| 红安县| 崇左市| 平果县| 聊城市| 黔西| 嫩江县| 南漳县|