国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于ISSA-LSTM的熱舒適短期預測模型
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省自然科學(xué)基礎研究基金(2022JM-283),陜西省建設廳科技發(fā)展計劃項目(2020-K17)。


Short-term prediction model for thermal comfort based on ISSA-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決在測試日內的短期預測過(guò)程中,農村城鎮人體熱舒適中建筑惰性及人員等隨機因素使人體感受變化的樣本對預測結果影響大而導致預測精準度低的問(wèn)題,提出基于改進(jìn)麻雀搜索算法(Improvement Sparrow Search Algorithm, ISSA)優(yōu)化長(cháng)短期記憶神經(jīng)網(wǎng)絡(luò )(Long Short-Term Memory Neural Network, LSTM)的方法建立新型戶(hù)用空調熱舒適短期預測模型。首先,對測試日氣象數據進(jìn)行動(dòng)態(tài)性分析,對數據進(jìn)行有效性驗證并構建多種熱舒適預測模型;隨后選用新型戶(hù)用熱舒適短期預測模型(ISSA-LSTM)對熱舒適進(jìn)行預測。結果表明,模型的最高預測均方誤差(Mean Squared Error,MSE)比麻雀搜索算法(Sparrow Search Algorithm,SSA)和蜣螂優(yōu)化算法(Dung beetle optimizer,DBO)優(yōu)化LSTM分別提高了0.02296和0.10827,采用ISSA-LSTM方法后改善了短期熱舒適預測的精度問(wèn)題,并提高了分體式空調通過(guò)熱舒適來(lái)控制溫度的性能。

    Abstract:

    In order to solve the problem of low prediction accuracy due to the influence of random factors such as building inertia and personnel in human thermal comfort in rural towns on the prediction results during short-term prediction within the test day, we propose an optimized Long Short-Term Memory Neural Network (LSTM) based on the Improved Sparrow Search Algorithm (ISSA). A new short-term prediction model for thermal comfort of residential air conditioners is developed based on the Long Short-Term Memory Neural Network (LSTM) method. Firstly, we analyzed the dynamics of the weather data on the test days, verified the validity of the data and constructed various thermal comfort prediction models; then, we selected the new household thermal comfort short-term prediction model (ISSA-LSTM) to predict thermal comfort. The results showed that the highest prediction mean squared error (MSE) of the model was 0.02296 and 0.10827 higher than that of the Sparrow Search Algorithm (SSA) and Dung beetle optimizer (DBO) optimized LSTM, respectively. The ISSA-LSTM method improves the accuracy problem of short-term thermal comfort prediction and improves the performance of split air conditioners to control temperature through thermal comfort.

    參考文獻
    相似文獻
    引證文獻
引用本文

閆秀英,肖桂波,王鑫洋,吉星星.基于ISSA-LSTM的熱舒適短期預測模型計算機測量與控制[J].,2024,32(5):230-237.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-05
  • 最后修改日期:2023-07-10
  • 錄用日期:2023-07-10
  • 在線(xiàn)發(fā)布日期: 2024-05-22
  • 出版日期:
文章二維碼
襄垣县| 花莲县| 沙田区| 昌宁县| 涟水县| 银川市| 蒙城县| 商洛市| 会宁县| 宜城市| 淳化县| 岑溪市| 南城县| 津南区| 桂阳县| 阜康市| 乐陵市| 平凉市| 玉田县| 迁安市| 张家港市| 九寨沟县| 杂多县| 灵台县| 巴青县| 金乡县| 长沙县| 揭阳市| 辽阳市| 内丘县| 商河县| 绵阳市| 泾阳县| 千阳县| 双江| 张北县| 博野县| 马山县| 志丹县| 辛集市| 永丰县|