国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的智能治超場(chǎng)景下貨車(chē)車(chē)型識別
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.4 ??????

基金項目:

甘肅省科技計劃資助(21YF11GA014)


Type Recognition of Trucks Based on Deep Learning in Intelligent Overload Management Scenarios
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對智能治超場(chǎng)景下超載車(chē)輛自動(dòng)化檢測的需求,在YOLOv5s的基礎上從數據、模型和算法三個(gè)方面提出了一種改進(jìn)的貨車(chē)車(chē)型識別算法。在數據層面,使用的數據增強模擬了現實(shí)中面對惡劣天氣、圖像噪聲和數據損壞等復雜場(chǎng)景,豐富了訓練數據的多樣性,提高了模型在復雜場(chǎng)景下的魯棒性。在模型方面,提出了一種新的注意力機制來(lái)綜合考慮不同通道的重要性和編碼特征的位置信息,提高了模型的識別準確性。在算法層面,針對現有算法的不足,提出了一種更通用的標準來(lái)判斷貨車(chē)與輪軸的隸屬關(guān)系,以適用更復雜的場(chǎng)景。實(shí)驗結果表明,提出的改進(jìn)模型對貨車(chē)和輪軸的識別精度分別達到99.34%和99.22%,對貨車(chē)車(chē)型識別的準確率為98.71%。與經(jīng)典的YOLOv5s網(wǎng)絡(luò )相比,貨車(chē)和輪軸的平均識別精度提高了2.39%,貨車(chē)車(chē)型的識別準確率提高了2.22%。綜上,所提出的方法實(shí)現了對貨車(chē)車(chē)型自動(dòng)和準確的識別,可以為智能治超場(chǎng)景下的貨車(chē)車(chē)型識別提供理論支撐。

    Abstract:

    In response to the demand for automated detection of overloaded trucks in intelligent overload management scenarios, an improved method is proposed based on YOLOv5s to recognize truck type from three aspects: data, model, and algorithm. At the data level, the data augmentation used simulates complex scenarios such as facing severe bad weather conditions, image noise, and data damage in real life, which enriches the diversity of training data and improves the robustness of the model. In terms of the model, a new attention mechanism is proposed to consider the importance of different channels and the positional information of encoding features, which improves the recognition accuracy of the model. In order to overcome the shortcomings of existing algorithms, a more general standard for determining the subordinate relationship between trucks and axles is proposed to apply to more complex scenarios. The experimental results show that the proposed improved model achieves recognition accuracy of 99.34% and 99.22% for truck and axle, respectively, and 98.71% accuracy for truck type recognition. Compared with the classic YOLOv5s network, the average recognition accuracy of trucks and axles has increased by 2.39%, and the truck type recognition accuracy is increased by 2.22%. In summary, the proposed method achieves automatic and accurate recognition of truck type, which can provide theoretical support for truck type recognition in intelligent overload management scenarios.

    參考文獻
    相似文獻
    引證文獻
引用本文

張磊,康進(jìn)實(shí),楊勁濤.基于深度學(xué)習的智能治超場(chǎng)景下貨車(chē)車(chē)型識別計算機測量與控制[J].,2023,31(11):248-254.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-30
  • 最后修改日期:2023-06-05
  • 錄用日期:2023-06-06
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
苍梧县| 潢川县| 南昌市| 桂林市| 克什克腾旗| 微山县| 万全县| 灌阳县| 威宁| 天水市| 龙陵县| 健康| 普格县| 九龙坡区| 夏津县| 夏邑县| 鄂尔多斯市| 三都| 北京市| 普格县| 卢湾区| 雅安市| 特克斯县| 宣武区| 东乡族自治县| 渭源县| 子洲县| 庆城县| 西乡县| 古田县| 紫阳县| 沾化县| 易门县| 平顺县| 孝感市| 遂宁市| 彭阳县| 高州市| 交口县| 唐河县| 彰化县|