国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于SOINN結合ADNDD的網(wǎng)絡(luò )安全動(dòng)態(tài)控制技術(shù)研究
DOI:
CSTR:
作者:
作者單位:

中國人民解放軍東部戰區總醫院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP393.083

基金項目:

東部戰區總醫院院管項目(YYQN2021081)


Research on hospital network security dynamic control technology based on network anomaly monitoring
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    醫院網(wǎng)絡(luò )安全動(dòng)態(tài)控制技術(shù)對于保障醫院網(wǎng)絡(luò )的安全性和穩定性具有重要意義。傳統的網(wǎng)絡(luò )異常監測和網(wǎng)絡(luò )安全動(dòng)態(tài)控制無(wú)法解決大面積網(wǎng)絡(luò )入侵的問(wèn)題。因此,為了解決這些問(wèn)題,研究構建了基于自組織增量式神經(jīng)網(wǎng)絡(luò )算法(Self-Organizing Incremental Neural Network, SOINN)結合數字信息處理的網(wǎng)絡(luò )技術(shù)(Advanced Digital Network Data Design, ADNDD)的醫院安全動(dòng)態(tài)控制模型。首先對算法進(jìn)行優(yōu)化,其次將SOINN與ADNDD進(jìn)行融合構建網(wǎng)絡(luò )安全動(dòng)態(tài)控制模型,最后利用數據集去驗證模型的性能。結果表明,在數據集中訓練后,模型在對浪涌攻擊、偏差攻擊和幾何攻擊數據集中的離群點(diǎn)識別率分別為92.13%、90.04%和89.07%。這說(shuō)明模式算法經(jīng)過(guò)數據集的應用能夠在醫院網(wǎng)絡(luò )異常檢測和動(dòng)態(tài)防御控制中滿(mǎn)足網(wǎng)絡(luò )安全的要求。旨為提高醫院網(wǎng)絡(luò )的安全性和穩定性。

    Abstract:

    Hospital network security dynamic control technology is of great significance to ensure the security and stability of hospital networks. The traditional network anomaly monitoring and network security dynamic control cannot solve the problem of large area network intrusion. Therefore, in order to solve these problems, the study constructs a hospital security dynamic control model based on Self-Organizing Incremental Neural Network (SOINN) algorithm combined with Advanced Digital Network Data Design (ADNDD), a digital information processing network technology. ) for hospital safety dynamic control model. Firstly, the algorithm is optimized, secondly, the SOINN and ADNDD are fused to construct the network security dynamic control model, and finally, the performance of the model is verified using the dataset. The results show that after training in the dataset, the outlier recognition rate of the model in the datasets of surge attack, deviation attack and geometric attack is 92.13%, 90.04% and 89.07%, respectively. This indicates that the model algorithm can meet the requirements of network security in hospital network anomaly detection and dynamic defense control after the application of the dataset. The aim is to improve the security and stability of hospital networks.

    參考文獻
    相似文獻
    引證文獻
引用本文

溫浩杰,解韻坤,蘇彬.基于SOINN結合ADNDD的網(wǎng)絡(luò )安全動(dòng)態(tài)控制技術(shù)研究計算機測量與控制[J].,2024,32(1):99-104.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-29
  • 最后修改日期:2023-07-10
  • 錄用日期:2023-07-10
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
福清市| 凤城市| 太和县| 五台县| 信阳市| 车致| 古田县| 黎平县| 和林格尔县| 台湾省| 谢通门县| 余干县| 漯河市| 崇文区| 乌苏市| 宜都市| 彩票| 长海县| 东辽县| 樟树市| 扶绥县| 堆龙德庆县| 宁安市| 吉安市| 涿州市| 娱乐| 娄底市| 华蓥市| 东港市| 永福县| 城步| 灯塔市| 富顺县| 杂多县| 锦州市| 淅川县| 华宁县| 若尔盖县| 揭阳市| 新平| 祁门县|