国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5s的焦爐煙火識別算法
DOI:
CSTR:
作者:
作者單位:

山東建筑大學(xué) 信息與電氣工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(62003191)


Coke Oven Smoke and Fire Recognition Algorithm Based on Improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對煉焦廠(chǎng)煙火排放全天候環(huán)保監測的要求,提出了基于改進(jìn)YOLOv5s的焦爐煙火識別算法;該算法以YOLOv5s為基礎網(wǎng)絡(luò ),在主干網(wǎng)絡(luò )Backbone中添加CBAM注意力機制模塊,使網(wǎng)絡(luò )更加關(guān)注重要的特征,提升目標檢測的準確率;新增FReLU激活函數代替SiLU激活函數,提高激活空間的靈敏度,改善煙火圖像視覺(jué)任務(wù);在自建數據集中煙、火樣本標簽基礎上,增加燈光標簽來(lái)解決強燈光對火焰識別的干擾,并通過(guò)分流訓練、檢測的方式來(lái)解決晝夜場(chǎng)景的煙火檢測問(wèn)題;在自建數據集上做對比實(shí)驗,更換激活函數后,聯(lián)合CBAM模塊的YOLOv5s模型效果最佳;實(shí)驗結果顯示,與原始YOLOv5s模型相比,在白天場(chǎng)景下的煙火識別mAP值提升了6.7%,在夜間場(chǎng)景下的煙火識別mAP值高達97.4%。

    Abstract:

    For the requirements of all-weather environmental monitoring of smoke and fire emissions from coke plants, a coke oven smoke and fire recognition algorithm based on improved YOLOv5s is proposed; the algorithm uses YOLOv5s as the base network and adds CBAM"s attention mechanism module to the reference network, so that the network focuses more on relevant features and improves target detection accuracy; a new FReLU activation function replaces the SiLU activation function to improve the sensitivity of the activation space and improve the smoke and fire image vision task; on the basis of smoke and fire sample labels in the self-built dataset, add light labels to solve the interference of strong lights on flame recognition, and solve the smoke and fire detection problem of day and night scenes by shunting training and detection; do comparison experiments on the self-built dataset, after replacing the activation function, the joint CBAM module of the experimental results show, that the mAP value of smoke and fire detection in the day scene is improved by 6.7% compared with the original YOLOv5s model, and the mAP value of smoke and fire recognition in nighttime scenes is as high as 97.4%.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉一銘,張運楚,周燕菲,張欣毅.基于改進(jìn)YOLOv5s的焦爐煙火識別算法計算機測量與控制[J].,2024,32(5):186-192.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-25
  • 最后修改日期:2023-06-26
  • 錄用日期:2023-06-27
  • 在線(xiàn)發(fā)布日期: 2024-05-22
  • 出版日期:
文章二維碼
海口市| 蒙阴县| 香河县| 台山市| 濉溪县| 正蓝旗| 扶沟县| 霞浦县| 聂荣县| 泸西县| 贵州省| 普宁市| 贵定县| 通许县| 壶关县| 淅川县| 隆昌县| 通化县| 金寨县| 邻水| 中方县| 犍为县| 沙坪坝区| 伽师县| 元江| 建阳市| 商都县| 临城县| 阿图什市| 石阡县| 安国市| 张家港市| 白水县| 深州市| 东乌珠穆沁旗| 宁南县| 阳西县| 南皮县| 东明县| 泾源县| 平度市|