国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于長(cháng)短期記憶網(wǎng)絡(luò )的高速公路車(chē)輛變道軌跡預測模型
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

課題:


Lane change trajectory prediction model of expressway vehicles based on short-term memory network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    高速公路車(chē)輛車(chē)速、車(chē)距、行駛方向等因素都是動(dòng)態(tài)變化的,受外界環(huán)境干擾,采集到的目標車(chē)輛狀態(tài)特征數據可能存在噪聲,導致車(chē)輛變道軌跡預測存在誤差,為此提出基于長(cháng)短期記憶網(wǎng)絡(luò )的高速公路車(chē)輛變道軌跡預測模型,有效預測高速公路車(chē)輛變道軌跡,改善車(chē)輛行駛條件,保障其安全運行。通過(guò)激光雷達、GPS等裝置采集目標車(chē)輛交通數據,將其合理組合成目標車(chē)輛狀態(tài)觀(guān)測特征向量,并構建相應的特征向量矩陣,將所構建目標車(chē)輛狀態(tài)觀(guān)測特征向量矩陣作為1層卷積神經(jīng)網(wǎng)路輸入,提取目標車(chē)輛狀態(tài)觀(guān)測特征向量潛在特征后,以1層卷積神經(jīng)網(wǎng)絡(luò )輸出結果為雙向長(cháng)短期記憶網(wǎng)絡(luò )有效輸入,經(jīng)過(guò)無(wú)數次模型訓練后,輸出目標車(chē)輛變道軌跡預測結果。實(shí)驗結果表明:該模型可有效預測高速公路車(chē)輛變道軌跡,預測出的軌跡橫縱坐標誤差極低,能夠得到較為理想的高速公路車(chē)輛變道軌跡預測結果。

    Abstract:

    The vehicle speed, distance, driving direction and other factors on the expressway are all dynamic changes, and the collected target vehicle status feature data may have noise due to the interference of the external environment, which leads to errors in the prediction of vehicle lane change trajectory. Therefore, a prediction model of expressway vehicle lane change trajectory based on long-term and short-term memory network is proposed to effectively predict the lane change trajectory of expressway vehicles, improve vehicle driving conditions, and ensure their safe operation. Collect target vehicle traffic data through laser radar, GPS and other devices, reasonably combine them into target vehicle state observation eigenvectors, and construct corresponding eigenvector matrix. The constructed target vehicle state observation eigenvector matrix is used as the input of 1-layer convolutional neural network. After extracting the potential characteristics of target vehicle state observation eigenvectors, the output results of 1-layer convolutional neural network are effective input of two-way short-term memory network, After countless model trainings, the predicted lane change trajectory of the target vehicle is output. The experimental results show that the model can effectively predict the lane changing trajectory of highway vehicles, and the predicted trajectory has extremely low horizontal and vertical coordinate errors, which can obtain ideal prediction results for lane changing trajectories of highway vehicles.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫宏賢,徐蘭.基于長(cháng)短期記憶網(wǎng)絡(luò )的高速公路車(chē)輛變道軌跡預測模型計算機測量與控制[J].,2023,31(12):316-321.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-24
  • 最后修改日期:2023-07-07
  • 錄用日期:2023-07-07
  • 在線(xiàn)發(fā)布日期: 2023-12-27
  • 出版日期:
文章二維碼
宁海县| 穆棱市| 屯昌县| 大理市| 伊金霍洛旗| 西华县| 崇仁县| 贺兰县| 开原市| 安乡县| 阳原县| 富蕴县| 浦县| 上栗县| 安徽省| 遵化市| 白河县| 威海市| 广丰县| 保山市| 宣城市| 武陟县| 榆林市| 镶黄旗| 木兰县| 依兰县| 文安县| 江安县| 兖州市| 五大连池市| 伊川县| 自贡市| 抚远县| 淮阳县| 靖边县| 黄陵县| 泽普县| 临夏县| 绥芬河市| 凌海市| 道孚县|