国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

結合小波變換與改進(jìn)SSA優(yōu)化小波神經(jīng)網(wǎng)絡(luò )的電力負荷預測
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

四川省教育廳科技項目(20213967)


Power Load Prediction Combined Wavelet Transformed and Improved Sparrow Search Algorithm Optimizing Wavelet Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    電力負荷預測是輸電網(wǎng)絡(luò )擴展和規劃及合理電力調度的關(guān)鍵手段。針對電力負荷時(shí)間序列的非線(xiàn)性和復雜性特征,提出結合小波變換與改進(jìn)麻雀搜索算法優(yōu)化小波神經(jīng)網(wǎng)絡(luò )的電力負荷預測模型ISSA-WNN。設計改進(jìn)麻雀搜索算法ISSA對小波神經(jīng)網(wǎng)絡(luò )的關(guān)鍵參數初值尋優(yōu),有效解決梯度調參易陷入局部最優(yōu)及對參數初值敏感的不足,提升模型學(xué)習能力。對標準麻雀搜索算法SSA改進(jìn),引入Logistic-Tent混合混沌種群初始化、發(fā)現者/警戒者自適應更新、跟隨者可變對數螺旋更新和高斯-柯西混合變異策略提升算法尋優(yōu)能力。利用小波變換對電力負荷樣本分解與重構,降低負荷時(shí)序的無(wú)序性和波動(dòng)性,在此基礎上構建新的電力負荷預測模型ISSA-WNN。實(shí)驗結果表明,與標準小波神經(jīng)網(wǎng)絡(luò )模型WNN和標準麻雀搜索算法優(yōu)化小波神經(jīng)網(wǎng)絡(luò )模型SSA-WNN相比,預測模型ISSA-WNN的平均絕對百分比誤差和均方根誤差指標值平均可以降低18.42%和21.21%,其擬合能力更強,預測性能更加穩定。

    Abstract:

    Power load forecasting is a key means for transmission network expansion,planning and reasonable power dispatch.According to the nonlinear and complex characteristics of power load time series, a power load prediction model ISSA-WNN is proposed, which combines wavelet transform and improved sparrow search algorithm to optimize wavelet neural network. The improved sparrow search algorithm is designed to optimize the initial value of the key parameters of the wavelet neural network, which can effectively solve the problem that the gradient parameter adjustment is easy to fall into local optimum and sensitive to the initial value of parameters, and improving the model learning ability. The standard sparrow search algorithm is improved by introducing Logistic-Tent hybrid chaotic population initialization, discoverer/watcher adaptive update, follower variable logarithm spiral update and Gauss-Cauchy hybrid mutation strategy to improve the optimization ability of the algorithm. The wavelet transform is used to decompose and reconstruct the load sample to reduce the disorder and volatility of the load time sequence. On this basis, a new power load prediction model ISSA-WNN is constructed. The experimental results show that compared with the standard wavelet neural network model WNN and standard sparrow search algorithm optimizing wavelet neural network model SSA-WNN, the average absolute percentage error and root mean square error index values of the prediction model ISSA-WNN can be reduced by 18.42% and 21.21% on average, with stronger fitting ability and more stable prediction performance.

    參考文獻
    相似文獻
    引證文獻
引用本文

向東,趙文博,王玖斌,鄧岳輝,張偉,石燦,陳柄宏.結合小波變換與改進(jìn)SSA優(yōu)化小波神經(jīng)網(wǎng)絡(luò )的電力負荷預測計算機測量與控制[J].,2024,32(5):46-52.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-11
  • 最后修改日期:2023-06-20
  • 錄用日期:2023-06-20
  • 在線(xiàn)發(fā)布日期: 2024-05-22
  • 出版日期:
文章二維碼
临江市| 上蔡县| 繁昌县| 遂溪县| 宁国市| 抚顺市| 马龙县| 苍南县| 汉沽区| 诸暨市| 福鼎市| 九龙县| 铜陵市| 义乌市| 彰武县| 深州市| 双城市| 松原市| 阿瓦提县| 孟州市| 安顺市| 蚌埠市| 田东县| 沐川县| 大方县| 秀山| 平塘县| 绥江县| 宜良县| 渝中区| 景洪市| 江源县| 新田县| 武强县| 庆云县| 湟源县| 达拉特旗| 香河县| 永川市| 广饶县| 全州县|