国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)人工蜂鳥(niǎo)算法的VRV空調需求響應功率削減策略
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 建筑設備科學(xué)與工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.9

基金項目:

國家自然科學(xué)基金面上項目(52278125);陜西省自然科學(xué)基礎研究基金(2022JM-283);陜西省建設廳科技計劃發(fā)展項目(2020-K17)


Demand response power reduction strategy of VRV air conditioning based on improved artificial hummingbird algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對夏季用電高峰時(shí)期用戶(hù)對空調設定溫度隨意調節造成能源浪費以及需求側對電網(wǎng)控制指令響應不夠精確的問(wèn)題,提出了一種基于功率削減的空調溫度分檔需求響應調控策略;以某辦公建筑VRV空調為研究對象,分別建立該辦公建筑空調物理仿真模型以及功耗數學(xué)模型,并對模型的準確性進(jìn)行驗證;提出基于不同舒適度和激勵電價(jià)的VRV空調溫度控制檔位,構建室內機溫度分檔調控多目標優(yōu)化模型,優(yōu)化目標為調控時(shí)期空調實(shí)際功率與調控目標值的平均偏差以及負荷聚合商對用戶(hù)的激勵補償費用同時(shí)最小;選取人工蜂鳥(niǎo)算法作為優(yōu)化算法,針對該算法存在搜索速度慢、尋優(yōu)精度低、易早熟收斂等缺點(diǎn),在種群初始化階段采用Hammersley序列生成更加均勻的初始種群以提高算法的收斂速度與精度,在搜索階段采用高斯變異算子對蜂鳥(niǎo)位置進(jìn)行擾動(dòng)以進(jìn)一步提升算法的探索能力。運用改進(jìn)人工蜂鳥(niǎo)算法對模型進(jìn)行求解,并與人工蜂鳥(niǎo)算法、粒子群算法、灰狼優(yōu)化算法和鯨魚(yú)優(yōu)化算法的求解結果進(jìn)行對比,以證明所提策略的有效性;實(shí)驗結果表明,應用改進(jìn)人工蜂鳥(niǎo)算法求解后的結果在保證用戶(hù)舒適度的條件下最多可將功率調控精度提高83.1%并且將激勵費用減小8.36%。

    Abstract:

    A power reduction-based demand response regulation strategy for air conditioning temperature staging is proposed to address the problems of wasteful energy use caused by users' arbitrary adjustment of air conditioning temperature setpoints and imprecise response to grid control commands on the demand side during the summer peak electricity consumption. Taking an office building VRV air conditioning as the research object, a physical simulation model of office building VRV and a mathematical model of power consumption are established and validated. A optimization model is proposed for VRV air conditioning indoor units temperature staging control based on different comfort levels and incentive tariffs, with the optimization objectives is to minimize the average deviation between the actual power and the target value of the air conditioner during the regulation period and to minimize the incentive compensation cost of the load aggregator to the user. The artificial hummingbird algorithm is selected as the optimization algorithm. To address the shortcomings of the algorithm, such as slow search speed, low accuracy of the search and easy premature convergence, the Hammersley sequence is used in the population initialization stage to generate a more uniform initial population to improve the convergence speed and accuracy of the algorithm, and the Gaussian variational operator is used in the search The Gaussian variation operator is used to perturb the hummingbird positions in the search phase to further enhance the exploration capability of the algorithm. The improved artificial hummingbird algorithm was used to solve the model and compared with the results of the artificial hummingbird algorithm, the particle swarm algorithm, the grey wolf optimization algorithm and the whale optimization algorithm, to demonstrate the effectiveness of the proposed strategy; The model is solved using Improved Artificial Hummingbird Algorithm and compared with the optimization results of four optimization algorithms, namely artificial hummingbird algorithm, particle swarm optimization algorithm, grey wolf optimization algorithm and whale optimization algorithm, to demonstrate the effectiveness of the proposed strategy. The experimental results show that the improved artificial hummingbird algorithm can improve the power regulation accuracy by up to 83.1% and reduce the incentive cost by 8.36% while ensuring user comfort.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳羽飛,閆秀英,門(mén) 琪.基于改進(jìn)人工蜂鳥(niǎo)算法的VRV空調需求響應功率削減策略計算機測量與控制[J].,2023,31(10):263-272.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-05
  • 最后修改日期:2023-05-12
  • 錄用日期:2023-05-12
  • 在線(xiàn)發(fā)布日期: 2023-10-26
  • 出版日期:
文章二維碼
富阳市| 调兵山市| 泾川县| 兴和县| 嘉峪关市| 万全县| 厦门市| 德安县| 宁阳县| 富民县| 和硕县| 彩票| 甘洛县| 洛隆县| 桂东县| 通河县| 武汉市| 合肥市| 洞口县| 鄯善县| 乌兰浩特市| 黄梅县| 营口市| 遂溪县| 莎车县| 五寨县| 清涧县| 定日县| 潮州市| 胶州市| 社会| 额济纳旗| 浏阳市| 榆林市| 普兰店市| 防城港市| 鹿邑县| 金沙县| 海林市| 惠来县| 镇安县|