国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于YOLOv7的交通目標檢測算法研究
DOI:
CSTR:
作者:
作者單位:

延安大學(xué)物理與電子信息學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(62264015);延安市科技創(chuàng )新項目(2017CXTD-01)


Research on Traffic Object Detection Algorithm Based on YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對交通場(chǎng)景中由光照、遮擋、目標小以及背景復雜等因素導致目標檢測精度低,易出現漏檢和誤檢問(wèn)題的情況,提出了一種基于YOLOv7的交通目標檢測算法;該算法在主干網(wǎng)絡(luò )中融入多頭注意力機制,以增強網(wǎng)絡(luò )特征學(xué)習能力,從而更好地捕獲數據和特征內部的相關(guān)性;在YOLOv7頸部網(wǎng)絡(luò )引入協(xié)調注意力模塊(CA),將位置信息嵌入到注意力機制中,忽略無(wú)關(guān)信息的干擾,以增強網(wǎng)絡(luò )的特征提取能力;增加一個(gè)多尺度檢測網(wǎng)絡(luò ),以增強模型對不同尺度目標的檢測能力;將CIoU損失函數更改為SIoU函數,以減少模型收斂不穩定問(wèn)題,提高模型的魯棒性;實(shí)驗結果表明,改進(jìn)的算法在BDD100K公開(kāi)數據集上的檢測精度和速度分別達到了59.8% mAP和96.2 FPS,相比原算法檢測精度提高了2.5%;這表明改進(jìn)的算法在滿(mǎn)足實(shí)時(shí)性要求的同時(shí),具備良好的檢測精度,適用于復雜情況下的交通目標檢測任務(wù)。

    Abstract:

    Aiming at the situation that the target detection accuracy is low due to the factors of lighting, occlusion, small target and complex background in complex traffic scenes, and is prone to missed and false detection, a traffic target detection algorithm based on YOLOv7 is proposed. To better capture the correlation within data and features, the algorithm incorporates a multi-head attention mechanism into the backbone network to enhance the network feature learning ability. The Coordinated attention module (CA) is introduced into the YOLOv7 neck network and the position information is embedded into the attention mechanism, which can ignore the interference of irrelevant information and enhance the feature extraction ability of the network. A multi-scale detection network is added to enhance the detection capability of the model for different scale targets. Changing the CIoU loss function to SIoU function to reduce the problem of model convergence instability and improve the robustness of the model. Moreover, the results show that the detection accuracy and speed of the improved algorithm on the BDD100K public dataset reach 59.8% mAP and 96.2 FPS, respectively, representing an increase of 2.5% compared to that of the original algorithm. It shows that the improved algorithm has good detection accuracy while meeting the real-time requirements, which is suitable for traffic target detection tasks in complex situations.

    參考文獻
    相似文獻
    引證文獻
引用本文

王沛雪,張富春,董晨樂(lè ).基于YOLOv7的交通目標檢測算法研究計算機測量與控制[J].,2024,32(4):74-80.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-26
  • 最后修改日期:2023-06-09
  • 錄用日期:2023-06-12
  • 在線(xiàn)發(fā)布日期: 2024-04-29
  • 出版日期:
文章二維碼
沙洋县| 阳新县| 睢宁县| 徐水县| 东源县| 大余县| 都江堰市| 蚌埠市| 宝清县| 枝江市| 石阡县| 开鲁县| 延边| 确山县| 浠水县| 天津市| 方城县| 宜宾市| 漠河县| 夏邑县| 红原县| 红安县| 滨州市| 博爱县| 辉南县| 安顺市| 江西省| 平陆县| 涟水县| 利川市| 绵竹市| 海城市| 利辛县| 鄱阳县| 德兴市| 东乌珠穆沁旗| 江安县| 四川省| 阿尔山市| 儋州市| 临夏市|