国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于全神經(jīng)網(wǎng)絡(luò )增強算法的WSNs故障預警與檢測
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

2022年廣東省教育廳普通高校科研項目(2022WTSCX160)


WSNs Fault Warning and Detection Based on Full Neural Network Enhancement Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現有WSNs故障檢測算法存在的故障分類(lèi)檢測率低、耗時(shí)長(cháng)、節點(diǎn)能耗控制差等問(wèn)題,提出一種全神經(jīng)網(wǎng)絡(luò )增強故障預警與檢測算法。全神經(jīng)網(wǎng)絡(luò )的神經(jīng)元節點(diǎn)與臨近層的節點(diǎn)連接,形成具有強大故障數據訓練功能的深度網(wǎng)絡(luò )結構,選擇平滑性更好的sigmoid函數作為模型的激活函數,并基于感知機合理調節相鄰兩個(gè)隱含層之間的閾值權重,降低模型的訓練損失;采用Adam優(yōu)化算法抑制模型的梯度膨脹和梯度消失等異常情況,并消除訓練中產(chǎn)生的數據冗余,以降低故障數據訓練中產(chǎn)生的虛預警。實(shí)驗結果顯示:提出算法的總體故障檢測率和不同類(lèi)型故障的分類(lèi)檢測率都優(yōu)于傳統算法,此外全神經(jīng)網(wǎng)絡(luò )增強算法在節點(diǎn)故障檢測耗時(shí)和能耗控制方面,也具有顯著(zhù)優(yōu)勢。

    Abstract:

    A fully neural network enhanced fault warning and detection algorithm is proposed to address the problems of low fault classification detection rate, long time consumption, and poor control of node energy consumption in existing WSNs fault detection algorithms. The neuron nodes of the full neural network are connected with the nodes in the adjacent layers to form a deep network structure with strong fault set training function. The sigmoid function with better smoothness is selected as the activation function of the model, and the weight threshold between the adjacent two hidden layers is reasonably adjusted based on the perceptron to reduce the training loss of the model; Using the Adam optimization algorithm to suppress the gradient expansion and vanishing of the model, and eliminate data redundancy generated during training, reducing the false warning generated by fault data training. The experimental results show that the overall fault detection rate and classification detection rate of different types of faults of the proposed algorithm are superior to traditional algorithms. In addition, the full neural network enhancement algorithm also has significant advantages in node fault detection time and energy consumption control.

    參考文獻
    相似文獻
    引證文獻
引用本文

蘭婭勛,蔡娟,李振坤.基于全神經(jīng)網(wǎng)絡(luò )增強算法的WSNs故障預警與檢測計算機測量與控制[J].,2023,31(11):81-87.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-20
  • 最后修改日期:2023-05-24
  • 錄用日期:2023-05-25
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
西峡县| 大渡口区| 揭西县| 鸡泽县| 城固县| 墨玉县| 蓬莱市| 定西市| 封开县| 金塔县| 绍兴县| 繁昌县| 闵行区| 鄂温| 广水市| 呼伦贝尔市| 花莲县| 稻城县| 松桃| 北海市| 黑龙江省| 金门县| 蓝山县| 罗甸县| 高雄县| 娄烦县| 历史| 登封市| 吴桥县| 蒙自县| 电白县| 玉环县| 莫力| 麦盖提县| 左权县| 泰顺县| 定远县| 宜兰市| 葵青区| 佛冈县| 峡江县|