国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)Yolov5s的輸電線(xiàn)路防外力破壞行為檢測識別
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省自然科學(xué)基金資助項目(BK20201042);江蘇省政策引導類(lèi)計劃項目(SZ-SQ2020007)


Detection and Identification of Transmission Line Damage Prevention Behavior Based on Improved Yolov5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    電力系統的安全對于整個(gè)能源傳輸過(guò)程至關(guān)重要。針對輸電線(xiàn)路下超大工程車(chē)輛和煙火為主要的外力破壞行為,對單階段目標檢測算法YOLOv5s進(jìn)行改進(jìn),首先針對輸電線(xiàn)路多雨霧煙塵等工作環(huán)境,引入限制對比度自適應直方圖均衡算法CLAHE對圖片進(jìn)行去霧處理,提升圖片對比度;針對檢測目標距離較遠的問(wèn)題,在YOLOv5s網(wǎng)絡(luò )的基礎上添加CA注意力機制,提升了模型對目標的定位能力;將原網(wǎng)絡(luò )中的最鄰近差值采樣方式替換為輕量級通用上采樣算子CARAFE,更好地捕捉特征圖的同時(shí)引入較小的參數量;最后在網(wǎng)絡(luò )的特征融合層,使用具有通道混洗思想的GSConv卷積模塊代替標準卷積模塊,減小模型參數量,再利用slim_neck特征融合結構,強化目標關(guān)注度,達到減小模型參數量同時(shí)提升檢測精度的效果。實(shí)驗結果表明:改進(jìn)后的YOLOv5s網(wǎng)絡(luò ),mAP提升了4.4%,參數量減小了3.4%,權重模型內存減小了2.7%,證明了算法的有效性。

    Abstract:

    The safety of the power system is crucial for the entire energy transmission process. Aiming at the main external force destruction behavior of super large engineering vehicles and fireworks under the transmission line, the single-stage target detection algorithm YOOv5s is improved. First, aiming at the working environment of the transmission line with heavy rain, fog and dust, the restricted contrast adaptive histogram equalization equalization algorithm CLAHE is introduced to defog the image to improve the image contrast; In response to the problem of detecting targets with long distances, a CA attention mechanism was added to the YOLOv5s network to enhance the model's ability to locate targets; Replace the nearest neighbor difference sampling method in the original network with the lightweight universal upsampling operator CARAFE, which better captures feature maps while introducing smaller parameter quantities; Finally, in the feature fusion layer of the network, a GSConv convolution module with channel shuffling idea is used to replace the standard convolution module, reducing the number of model parameters, and then utilizing Slim_ Neck feature fusion structure enhances target attention, achieving the effect of reducing model parameters while improving detection accuracy. The experimental results show that the improved YOLOv5s network improves mAP by 4.4%, reduces parameter count by 3.4%, and reduces weight model memory by 2.7%, proving the effectiveness of the algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭良成,曹雪虹,焦良葆,高陽(yáng),王彥生.基于改進(jìn)Yolov5s的輸電線(xiàn)路防外力破壞行為檢測識別計算機測量與控制[J].,2024,32(2):42-49.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-30
  • 最后修改日期:2023-05-03
  • 錄用日期:2023-05-04
  • 在線(xiàn)發(fā)布日期: 2024-03-20
  • 出版日期:
文章二維碼
定襄县| 彩票| 元朗区| 洛宁县| 满洲里市| 涞源县| 开封市| 新源县| 平潭县| 临澧县| 晴隆县| 绍兴市| 沾化县| 桐庐县| 临漳县| 瓮安县| 阳朔县| 嵊州市| 理塘县| 项城市| 曲水县| 长海县| 义乌市| 即墨市| 珠海市| 博兴县| 大悟县| 济源市| 乡宁县| 荃湾区| 乐清市| 盐源县| 土默特左旗| 屯留县| 扎赉特旗| 平舆县| 电白县| 瑞安市| 永昌县| 道孚县| 靖宇县|