国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于毫米波雷達稀疏點(diǎn)云的人體行為識別方法
DOI:
CSTR:
作者:
作者單位:

上海大學(xué)通信與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Human Activity Recognition Method from Mmwave Radar Sparse Point Clouds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前利用毫米波雷達進(jìn)行人體行為識別的方法在復雜場(chǎng)景下無(wú)法很好的區分相似動(dòng)作,與此同時(shí)模型的魯棒性和抗干擾能力也相對較差;針對以上兩個(gè)問(wèn)題,提出了一種通用的基于毫米波雷達稀疏點(diǎn)云的人體行為識別方法,該方法首先利用K-means++聚類(lèi)算法對點(diǎn)云進(jìn)行采樣,然后使用基于注意力特征融合的點(diǎn)云活動(dòng)分類(lèi)網(wǎng)絡(luò )進(jìn)行人體行為特征的提取和識別,該網(wǎng)絡(luò )可以兼顧點(diǎn)云的空間特征以及時(shí)序特征,對稀疏點(diǎn)云的運動(dòng)有靈敏的感知能力;為了驗證所提出方法的有效性和魯棒性,分別在MMActivity數據集和MMGesture數據集上進(jìn)行了實(shí)驗,其在兩個(gè)數據集上取得97.50%和94.10%的準確率,均優(yōu)于其它方法;此外,進(jìn)一步驗證了K-means++點(diǎn)云采樣方法的有效性,相較于隨機采樣,準確率提升了0.4個(gè)百分點(diǎn),實(shí)驗結果表明所提出方法能夠有效的提升人體行為識別的準確率,且模型具有較好的泛化能力。

    Abstract:

    At present, the human behavior recognition methods based on millimeter wave radar cannot distinguish similar actions when facing complicated scenes.In addition, there is a low robustness and interference resistance among these methods. To address the above two issues, a generic human behavior recognition method based on millimeter wave radar sparse point clouds is proposed, the method first samples the point cloud using the K-means++ clustering algorithm, and then uses a point cloud activity classification network based on attentional feature fusion for the extraction and recognition of human behavior features, which can take into account both spatial and temporal features of point clouds and has a sensitive perception of the motion of sparse point clouds. In order to verify the effectiveness and robustness of the proposed method, experiments were conducted on the MMActivity dataset and MMGesture dataset, respectively, which achieved 97.50% and 94.10% accuracy on both datasets, outperforming other methods. Furthermore, the effectiveness of the K-means++ point cloud sampling method is further verified, and the accuracy is improved by 0.4 percentage points compared to random sampling.The experimental results show that the proposed method can effectively promote the accuracy of human behavior recognition, and the model possesses a strong generalization ability.

    參考文獻
    相似文獻
    引證文獻
引用本文

李育臣,張之江,曾丹,李佳.基于毫米波雷達稀疏點(diǎn)云的人體行為識別方法計算機測量與控制[J].,2024,32(2):198-205.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-22
  • 最后修改日期:2023-04-25
  • 錄用日期:2023-04-25
  • 在線(xiàn)發(fā)布日期: 2024-03-20
  • 出版日期:
文章二維碼
独山县| 瓦房店市| 依兰县| 西乌珠穆沁旗| 翁牛特旗| 师宗县| 珲春市| 峨眉山市| 休宁县| 马山县| 巴青县| 阳谷县| 克山县| SHOW| 稻城县| 临汾市| 浦县| 鹤山市| 奈曼旗| 玉山县| 高要市| 丹江口市| 泽州县| 灌南县| 屯留县| 安国市| 美姑县| 石狮市| 城固县| 沅陵县| 基隆市| 鹤岗市| 芦山县| 丘北县| 南和县| 佳木斯市| 梁山县| 东阿县| 华宁县| 海宁市| 和政县|